您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (5): 11-19.doi: 10.6040/j.issn.1671-9352.4.2021.014

• • 上一篇    

基于参数粒的广义多粒度粗糙集

孙文鑫1,刘玉锋2   

  1. 1.重庆水利电力职业技术学院, 重庆 402160;2.重庆城市科技学院, 重庆 402160
  • 发布日期:2022-05-27
  • 作者简介:孙文鑫(1988— ),女,硕士,讲师,研究方向为为粗糙集和模糊集.E-mail:sunxuxin520@163.com
  • 基金资助:
    重庆市教委科学技术研究计划项目(KJQN202003806)

Generalized multi-granularity rough sets based on parameter granular

SUN Wen-xin1, LIU Yu-feng2   

  1. 1. Chongqing Water Resources and Electric Engineering College, Chongqing 402160, China;
    2. Chongqing Metropolitan College of Science and Technology, Chongqing 402160, China
  • Published:2022-05-27

摘要: 针对信息源对同一问题或决策干扰程度不同时信息粒的获取问题,提出了一种用参数获取信息粒的方法。首先给出了计数函数、参数粒、参数支撑函数的定义;其次通过参数支撑函数构建了2种广义多粒度参数粒粗糙集模型,并讨论了广义多粒度参数粒粗糙集上、下近似算子的性质,给出了Ⅰ型广义多粒度参数粒粗糙上近似算子的算法;再次,通过定义2种广义多粒度参数粒的精确度和粗糙度讨论了这2种广义多粒度参数粒粗糙集的度量问题;另外,通过商品分类的例子说明了模型的有效性;最后通过实验数据分析,发现参数越大,Ⅰ型广义多粒度参数粒的精确度越高。

关键词: 信息系统, 广义多粒度, 粗糙集, 参数粒, 度量

Abstract: A method of obtaining information granules by parameters is proposed aiming at the problem of obtaining information granule when information source interferes with the same problem or decision-making differently. Firstly, the definitions of counting function, parameter granule and parameter support function are given. Secondly, two kinds of generalized multi-granularity parameter granular rough set models are constructed by parameter support function, and the properties of upper and lower approximation operators of generalized multi granularity parameter granular rough set are discussed. The algorithm of upper approximation operator of type Ⅰ generalized multi-granularity parameter granular rough set is given. Thirdly, the measurement of two kinds of generalized multi-granularity parameter granule rough sets is discussed by defining the accuracy and roughness of two kinds of generalized multi-granularity parameter granule. In addition, an example is given to show the effectiveness of the model. Finally, through the analysis of experimental data, it is found that the larger the parameter is, the higher the accuracy of type Ⅰ generalized multi-granularity parameter is.

Key words: information system, generalized multi-granularity, rough set, parameter granular, measurement

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] 王阿忠,李倩.基于粗糙集神经网络的房产税基批量评估研究[J].福州大学学报(哲学社会科学版),2019,33(5):30-37. WANG Azhong, LI Qian. A study of mass appraisal on real-estate tax base of rough set neural network[J]. Journal of Fuzhou University(Philosophy and Social Sciences), 2019, 33(5):30-37.
[3] 李帅,刘希喆.基于粗糙集的低压配网台区综合评价方法[J].电气自动化,2020,42(4):61-62,114. LI Shuai, LIU Xizhe. Method of comprehensive evaluation for low-voltage distribution network area based on rough set[J]. Electrical Automation, 2020, 42(4):61-62,114.
[4] 赵祥. 基于粗糙集与证据理论的船舶发电机组故障诊断研究[D]. 大连:大连海事大学,2019. ZHANG Xiang. Research on fault diagnosis of ship generator set based on rough set and evidence theory[D]. Dalian:Dalian Maritime University, 2019.
[5] 王欢. 基于粗糙集的企业诊断效用价值评价研究[D].南宁:广西大学,2019. WANG Huan. Research on the value evaluation of enterprise diagnosis utility based on rough set[D]. Nanning:Guangxi University, 2019.
[6] AHMED H, AHMED S, HAMED N. Distributed approach for computing rough set approximations of big incomplete information systems[J]. Information Sciences, 2021, 547: 427-449.
[7] YE Jin, ZHAN Jianming, DING Weiping, et al. A novel fuzzy rough set model with fuzzy neighborhood operators[J]. Information Sciences, 2021, 544:266-297.
[8] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6): 949-970.
[9] LI Mengmeng, CHEN Minghao, XU Weihua. Double-quantitative multi-granulation decision-theoretic rough fuzzy set model[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(11): 3225-3244.
[10] 薛占熬,赵丽平,张敏,等. 多粒度支持直觉模糊粗糙集的多属性决策方法[J].模式识别与人工智能,2019,32(8):677-690. XUE Zhanao, ZHAO Liping, ZHANG Min, et al. Multi-attribute decision-making method based on multi-granulation support intuitionistic fuzzy rough[J]. Pattern Recognition and Artificial Intelligence, 2019(8):677-690.
[11] ZHAN Jianming, XU Weihua. Two types of coverings based multigranulation rough fuzzy sets and applications to decision making[J]. Artificial Intelligence Review, 2020, 53(3):167-198.
[12] 王虹,李敏赢. 局部广义多粒度粗糙集[J].计算机工程与科学,2020,42(8):1463-1471. WANG Hong, LI Minying. Local generalized multi-granulation rough set[J]. Computer Engineering & Science, 2020, 42(8):1463-1471.
[13] 侯成军,米据生,梁美社. 基于局部可调节多粒度粗糙集的属性约简[J].计算机科学,2020,47(3):87-91. HOU Chengjun, MI Jusheng, LIANG Meishe. Attribute reduction based on local adjustable multi-granulation rough set[J]. Computer Science, 2020, 47(3):87-91.
[14] XU Weihua, ZHANG Xiantao, WANG Qiaorong. A generalized multi-granulation rough set approach [M] //Bio-Inspired Computing and Applications. New York: Springer, 2011:681-689.
[15] 余宇婷. 多粒度粗糙集模型及其在霾与气象要素相关性分析上的应用研究[D]. 南昌: 南昌大学,2017. YU Yuting. Multi-granularity rough set model and its application in the correlation analysis of haze and meteorological factors[D]. Nanchang: Nanchang University, 2017.
[16] 钟诚,李金海. 组合多粒度粗糙集及其在教学评价中的应用[J]. 数码设计,2017,6(1):1-5. ZHONG Cheng, LI Jinhai. Combined multi-granulation rough set and its application to teaching evaluation[J]. Peak Data Science, 2017, 6(1):1-5.
[17] 梁美社,米据生,冯涛. 广义优势多粒度直觉模糊粗糙集的属性约简[J]. 计算机科学,2018,45(10):54-58. LIANG Meishe, MI Jusheng, FENG Tao. Generalized dominance based attribute reduetion for multi-granulation intuitionistic fuzzy rough set[J]. Computer Science, 2018, 45(10):54-58.
[18] 吴伟志,杨丽,谭安辉,等. 广义不完备多粒度标记决策系统的粒度选择[J]. 计算机研究与发展,2018,55(6):1263-1272. WU Weizhi, YANG Li, TAN Anhui, et al. Granularity selections in generalized incomplete multi-granular labeled secision systems[J]. Journal of Computer Research and Development, 2018, 55(6):1263-1272.
[19] 彭连贵,阎瑞霞,陈昭君.双论域上基于加权粒度的多粒度粗糙集[J].计算机与数字工程,2019,47(8):1985-1990. PENG Liangui, YAN Ruixia, CHEN Zhaojun. Multi-granulation rough set based on weighted granularity on the two universes[J].Computer & Digital Engineering, 2019, 47(8):1985-1990.
[1] 薛占熬,李永祥,姚守倩,荆萌萌. 基于Bayesian直觉模糊粗糙集的数据分类方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 1-10.
[2] 韩露,郭鑫垚,魏巍,梁吉业. 基于约束分层加权的多度量学习算法[J]. 《山东大学学报(理学版)》, 2022, 57(4): 12-20.
[3] 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48.
[4] 张杰,张燕兰. 基于相似关系的局部粗糙集模型[J]. 《山东大学学报(理学版)》, 2021, 56(3): 77-82.
[5] 张娇娇,张少谱,冯涛. 毕达哥拉斯模糊系统的优势关系及其约简[J]. 《山东大学学报(理学版)》, 2021, 56(3): 96-110.
[6] 张文娟,李进金,林艺东. 基于图的悲观多粒度粗糙集粒度约简[J]. 《山东大学学报(理学版)》, 2021, 56(1): 60-67.
[7] 杨晨,郑明辉,谭杰. 一种云服务器位置定位及安全性验证方案[J]. 《山东大学学报(理学版)》, 2020, 55(3): 28-34.
[8] 林艳丽,刘晓东. 不完备序信息系统下的局部双量化决策粗糙集研究[J]. 《山东大学学报(理学版)》, 2020, 55(3): 89-97.
[9] 韩双志,张楠,张中喜. 区间值决策系统的特定类β分布约简[J]. 《山东大学学报(理学版)》, 2020, 55(11): 66-77.
[10] 万青,马盈仓,魏玲. 基于多粒度的多源数据知识获取[J]. 《山东大学学报(理学版)》, 2020, 55(1): 41-50.
[11] 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61.
[12] 景运革,景罗希,王宝丽,程妮. 属性值和属性变化的增量属性约简算法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 62-68.
[13] 郑荔平,胡敏杰,杨红和,林耀进. 基于粗糙集的协同过滤算法研究[J]. 《山东大学学报(理学版)》, 2019, 54(2): 41-50.
[14] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[15] 熊兴国,路玲霞. 基于MV-代数的度量型模糊粗糙集[J]. 《山东大学学报(理学版)》, 2019, 54(11): 81-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!