您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (3): 96-110.doi: 10.6040/j.issn.1671-9352.4.2020.261

• • 上一篇    

毕达哥拉斯模糊系统的优势关系及其约简

张娇娇1,张少谱1*,冯涛2   

  1. 1.石家庄铁道大学数理系, 河北 石家庄 050043;2.河北科技大学理学院, 河北 石家庄 050018
  • 发布日期:2021-03-16
  • 作者简介:张娇娇(1996— ),女,硕士研究生,研究方向为人工智能的数学基础. E-mail:1547599769@qq.com*通信作者简介:张少谱(1980— ),男,博士,副教授,研究方向为人工智能的数学基础. E-mail:shaopuzhang@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(61573127);河北省自然科学基金资助项目(A2018210120,A2020208004);河北省人才工程培养资助项目(A2017002112,A201901049);河北省高等学校科学技术研究项目(QN2019062)

Dominance relationship and reduction of Pythagorean fuzzy systems

ZHANG Jiao-jiao1, ZHANG Shao-pu1*, FENG Tao2   

  1. 1. Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China;
    2. School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Published:2021-03-16

摘要: 首先定义了2个新的优势关系,并根据总体评估的定义和对个别属性的特殊要求,利用毕达哥拉斯模糊加性算子将每个对象的属性值聚合成整体评价,得到了2个广义优势粗糙集模型,利用这2个模型研究了优势毕达哥拉斯模糊系统的属性约简问题;其次,引入参数β∈[0,1],定义了β优势关系,得到广义β优势粗糙集模型,并进一步研究了优势毕达哥拉斯模糊决策系统的属性约简问题;最后用一个例子来说明本文所提出方法的实用性和有效性

关键词: 优势关系, 广义优势粗糙集, 属性约简, 优势毕达哥拉斯系统, 广义β优势粗糙集

Abstract: First, two new dominant relationships are defined, and according to the definition of the overall assessment and the special requirements of individual attributes, Pythagorean fuzzy additive operator is used to aggregate the individual attribute values of each object into an overall evaluation, and two generalized dominant rough set models are obtained. Using these two models, the attribute reduction problem of dominant Pythagorean fuzzy systems is studied. Secondly, the parameter β∈[0,1 is introduced, the β dominant relationship is defined, the generalized β dominant rough set model is obtained, and the above attribute reduction problem is further studied. Finally, an example is used to illustrate practicability and effectiveness of the proposed method.

Key words: dominance relationship, generalized dominance rough set, attribute reduction, dominance Pythagorean system, generalized β dominance rough set

中图分类号: 

  • O236
[1] PAWLAK Z, Rough set[J]. International Journal of Computer and Information Sciences. 1982, 11(5):341-356.
[2] PAWLAK Z, Rough sets[M]. Dordrecht: Kluwer Academic Publishers, 1992: 10-30.
[3] PAWLAK Z, SKOWRON A. Rough sets and Boolean reasoning[J]. Information Sciences, 2007, 177(1):41-73.
[4] PAWLAK Z, SKOWRON A. Rudiments of rough sets[J]. Information Sciences, 2007, 177(1):3-27.
[5] PAWLAK Z. Rough set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998, 29(7):661-688.
[6] DÜNTSCH I, GEDIGA G. Rough set data analysis: a road to non-invasive knowledge discovery[M]. Bangor: Methodos Publisher, 2000: 33-73.
[7] LIANG J Y, CHIN K S, DANG C Y, et al. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International Journal of General Systems, 2002, 31(4):331-342.
[8] LIANG J Y, SHI Z Z.The information entropy, rough entropy and knowledge granulation in rough set theory[J]. International Journal of Uncertainty Fuzziness & Knowledge Based Systems, 2004, 12(1):37-46.
[9] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy[J]. Pattern Recognit, 2016, 56(1):1-15.
[10] DAI Jianhua, HU Hu, WU Weizhi, et al. Maximal discernibility pairs based approach to attribute reduction in fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems, 2017, 26(4):2174-2187.
[11] DAI Jianhua, CHEN Jiaolong. Feature selection via normative fuzzy information weight with application into tumor classification[J]. Applied Soft Computing, 2020, 92:1-14.
[12] GU Shenming, WU Weizhi, ZHENG Yun. Rule acquisition in consistent multi-scale decision systems[C] //Eighth International Conference on Fuzzy Systems & Knowledge Discovery. Shanghai: IEEE, 2011: 390-393.
[13] GU Shenming, WU Weizhi. Knowledge acquisition in consistent multi-scale decision systems[C] //International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2011: 669-678.
[14] GU Shenming, WU Weizhi. On knowledge acquisition in multi-scale decision systems[J]. International Journal of Machine Learning & Cybernetics, 2013, 4(5):477-486.
[15] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General System, 2007, 17(2/3):191-209.
[16] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[17] YAGER R R. Pythagorean membership grades in multi-criteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):958-965.
[18] YAO Yiyu, YAN Zhao. Discernibility matrix simplification for constructing attribute reducts[J]. Information Sciences, 2009, 179(7):867-882.
[19] YIN Yunfei, GONG Guanghong, HAN Liang. Control approach to rough set reduction[J]. Computers and Mathematics with Applications, 2009, 57(1):117-126.
[20] FAN T F, LIAU C J, LIU D R. A relational perspective of attribute reduction in rough set-based data analysis[J]. European Journal of Operational Research, 2011, 213(1):270-278.
[21] HE Qiang, WU Congxin, CHEN Degang, et al. Fuzzy rough set based attribute reduction for information systems with fuzzy decisions[J]. Knowledge-Based Systems, 2011, 24(5):689-696.
[22] ZHAO Z, MORSTATTER F, SHARMA S, et al. Advancing feature selection research[EB/OL].(2010-01)[2019-03-20]. https://www.researchgate.net/publication/305083748_Advancing_feature_selection_research.
[23] JIA Xiuyi, LIAO Wenhe, TANG Zhenmin, et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2013, 219(1):151-167.
[24] WANG Guoyin, ZHAO Jun, AN Jiujiang, et al. Theoretical study on attribute reduction of rough set theory: comparison of algebra and information views[C] //Proceedings of the IEEE International Conference on Cognitive Informatics. Victoria: IEEE, 2004: 148-155.
[25] 邓大勇, 李亚楠, 薛欢欢. 基于粗糙集的可变正区域约简[J]. 浙江师范大学学报(自然科学版), 2016, 39(3):294-297. DENG Dayong, LI Yanan, XUE Huanhuan. Attribute reduction of various positive region based on rough sets[J]. Journal of Zhejiang Normal University(Natural Science), 2016, 39(3):294-297.
[26] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M] //SLOWINSKI R. Intelligent Decision Support. Dordrecht: Springer, 1992: 331-362.
[27] FELIX R, USHIO T. Rough sets-based machine learning using a binary discernibility matrix[C] //International Conference on Intelligent Processing & Manufacturing of Materials. Honolulu: IEEE, 1999.
[28] YAGER R R. Pythagorean membership grades in multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):958-965.
[29] ZHANG Xiaolong, XU Zeshui. Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2014, 29(12):3-10.
[30] 张少谱, 孙品, 冯涛. Pythagorean模糊信息系统属性约简的图论方法[J]. 郑州大学学报(理学版), 2020, 52(1):79-86. ZHANG Shaopu, SUN Pin, FENG Tao.Graph theory method for attribute reduction of Pythagorean fuzzy information system[J]. Journal of Zhengzhou University(Science Edition), 2020, 52(1):79-86.
[1] 林艳丽,刘晓东. 不完备序信息系统下的局部双量化决策粗糙集研究[J]. 《山东大学学报(理学版)》, 2020, 55(3): 89-97.
[2] 韩双志,张楠,张中喜. 区间值决策系统的特定类β分布约简[J]. 《山东大学学报(理学版)》, 2020, 55(11): 66-77.
[3] 景运革,景罗希,王宝丽,程妮. 属性值和属性变化的增量属性约简算法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 62-68.
[4] 万青,马盈仓,魏玲. 基于多粒度的多源数据知识获取[J]. 《山东大学学报(理学版)》, 2020, 55(1): 41-50.
[5] 郑荔平,胡敏杰,杨红和,林耀进. 基于粗糙集的协同过滤算法研究[J]. 《山东大学学报(理学版)》, 2019, 54(2): 41-50.
[6] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[7] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[8] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[9] 张晓,杨燕燕. 覆盖决策系统的规则提取和置信度保持的属性约简算法[J]. 《山东大学学报(理学版)》, 2018, 53(12): 120-126.
[10] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[11] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[12] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[13] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[14] 张灵均,徐久成,李双群,李晓艳. 相斥邻域的覆盖粗糙集实值属性约简[J]. J4, 2012, 47(1): 77-82.
[15] 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!