《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (3): 96-110.doi: 10.6040/j.issn.1671-9352.4.2020.261
• • 上一篇
张娇娇1,张少谱1*,冯涛2
ZHANG Jiao-jiao1, ZHANG Shao-pu1*, FENG Tao2
摘要: 首先定义了2个新的优势关系,并根据总体评估的定义和对个别属性的特殊要求,利用毕达哥拉斯模糊加性算子将每个对象的属性值聚合成整体评价,得到了2个广义优势粗糙集模型,利用这2个模型研究了优势毕达哥拉斯模糊系统的属性约简问题;其次,引入参数β∈[0,1],定义了β优势关系,得到广义β优势粗糙集模型,并进一步研究了优势毕达哥拉斯模糊决策系统的属性约简问题;最后用一个例子来说明本文所提出方法的实用性和有效性。
中图分类号:
[1] PAWLAK Z, Rough set[J]. International Journal of Computer and Information Sciences. 1982, 11(5):341-356. [2] PAWLAK Z, Rough sets[M]. Dordrecht: Kluwer Academic Publishers, 1992: 10-30. [3] PAWLAK Z, SKOWRON A. Rough sets and Boolean reasoning[J]. Information Sciences, 2007, 177(1):41-73. [4] PAWLAK Z, SKOWRON A. Rudiments of rough sets[J]. Information Sciences, 2007, 177(1):3-27. [5] PAWLAK Z. Rough set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998, 29(7):661-688. [6] DÜNTSCH I, GEDIGA G. Rough set data analysis: a road to non-invasive knowledge discovery[M]. Bangor: Methodos Publisher, 2000: 33-73. [7] LIANG J Y, CHIN K S, DANG C Y, et al. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International Journal of General Systems, 2002, 31(4):331-342. [8] LIANG J Y, SHI Z Z.The information entropy, rough entropy and knowledge granulation in rough set theory[J]. International Journal of Uncertainty Fuzziness & Knowledge Based Systems, 2004, 12(1):37-46. [9] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy[J]. Pattern Recognit, 2016, 56(1):1-15. [10] DAI Jianhua, HU Hu, WU Weizhi, et al. Maximal discernibility pairs based approach to attribute reduction in fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems, 2017, 26(4):2174-2187. [11] DAI Jianhua, CHEN Jiaolong. Feature selection via normative fuzzy information weight with application into tumor classification[J]. Applied Soft Computing, 2020, 92:1-14. [12] GU Shenming, WU Weizhi, ZHENG Yun. Rule acquisition in consistent multi-scale decision systems[C] //Eighth International Conference on Fuzzy Systems & Knowledge Discovery. Shanghai: IEEE, 2011: 390-393. [13] GU Shenming, WU Weizhi. Knowledge acquisition in consistent multi-scale decision systems[C] //International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2011: 669-678. [14] GU Shenming, WU Weizhi. On knowledge acquisition in multi-scale decision systems[J]. International Journal of Machine Learning & Cybernetics, 2013, 4(5):477-486. [15] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General System, 2007, 17(2/3):191-209. [16] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96. [17] YAGER R R. Pythagorean membership grades in multi-criteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):958-965. [18] YAO Yiyu, YAN Zhao. Discernibility matrix simplification for constructing attribute reducts[J]. Information Sciences, 2009, 179(7):867-882. [19] YIN Yunfei, GONG Guanghong, HAN Liang. Control approach to rough set reduction[J]. Computers and Mathematics with Applications, 2009, 57(1):117-126. [20] FAN T F, LIAU C J, LIU D R. A relational perspective of attribute reduction in rough set-based data analysis[J]. European Journal of Operational Research, 2011, 213(1):270-278. [21] HE Qiang, WU Congxin, CHEN Degang, et al. Fuzzy rough set based attribute reduction for information systems with fuzzy decisions[J]. Knowledge-Based Systems, 2011, 24(5):689-696. [22] ZHAO Z, MORSTATTER F, SHARMA S, et al. Advancing feature selection research[EB/OL].(2010-01)[2019-03-20]. https://www.researchgate.net/publication/305083748_Advancing_feature_selection_research. [23] JIA Xiuyi, LIAO Wenhe, TANG Zhenmin, et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2013, 219(1):151-167. [24] WANG Guoyin, ZHAO Jun, AN Jiujiang, et al. Theoretical study on attribute reduction of rough set theory: comparison of algebra and information views[C] //Proceedings of the IEEE International Conference on Cognitive Informatics. Victoria: IEEE, 2004: 148-155. [25] 邓大勇, 李亚楠, 薛欢欢. 基于粗糙集的可变正区域约简[J]. 浙江师范大学学报(自然科学版), 2016, 39(3):294-297. DENG Dayong, LI Yanan, XUE Huanhuan. Attribute reduction of various positive region based on rough sets[J]. Journal of Zhejiang Normal University(Natural Science), 2016, 39(3):294-297. [26] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M] //SLOWINSKI R. Intelligent Decision Support. Dordrecht: Springer, 1992: 331-362. [27] FELIX R, USHIO T. Rough sets-based machine learning using a binary discernibility matrix[C] //International Conference on Intelligent Processing & Manufacturing of Materials. Honolulu: IEEE, 1999. [28] YAGER R R. Pythagorean membership grades in multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):958-965. [29] ZHANG Xiaolong, XU Zeshui. Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2014, 29(12):3-10. [30] 张少谱, 孙品, 冯涛. Pythagorean模糊信息系统属性约简的图论方法[J]. 郑州大学学报(理学版), 2020, 52(1):79-86. ZHANG Shaopu, SUN Pin, FENG Tao.Graph theory method for attribute reduction of Pythagorean fuzzy information system[J]. Journal of Zhengzhou University(Science Edition), 2020, 52(1):79-86. |
[1] | 林艳丽,刘晓东. 不完备序信息系统下的局部双量化决策粗糙集研究[J]. 《山东大学学报(理学版)》, 2020, 55(3): 89-97. |
[2] | 韩双志,张楠,张中喜. 区间值决策系统的特定类β分布约简[J]. 《山东大学学报(理学版)》, 2020, 55(11): 66-77. |
[3] | 景运革,景罗希,王宝丽,程妮. 属性值和属性变化的增量属性约简算法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 62-68. |
[4] | 万青,马盈仓,魏玲. 基于多粒度的多源数据知识获取[J]. 《山东大学学报(理学版)》, 2020, 55(1): 41-50. |
[5] | 郑荔平,胡敏杰,杨红和,林耀进. 基于粗糙集的协同过滤算法研究[J]. 《山东大学学报(理学版)》, 2019, 54(2): 41-50. |
[6] | 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24. |
[7] | 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33. |
[8] | 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16. |
[9] | 张晓,杨燕燕. 覆盖决策系统的规则提取和置信度保持的属性约简算法[J]. 《山东大学学报(理学版)》, 2018, 53(12): 120-126. |
[10] | 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36. |
[11] | 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104. |
[12] | 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103. |
[13] | 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104. |
[14] | 张灵均,徐久成,李双群,李晓艳. 相斥邻域的覆盖粗糙集实值属性约简[J]. J4, 2012, 47(1): 77-82. |
[15] | 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76. |
|