您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 81-89.doi: 10.6040/j.issn.1671-9352.0.2018.674

• • 上一篇    下一篇

基于MV-代数的度量型模糊粗糙集

熊兴国1,路玲霞2*   

  1. 1.河北地质大学社会科学部, 河北 石家庄 050031;2.南京信息工程大学数学与统计学院, 江苏 南京 210044
  • 发布日期:2019-11-06
  • 作者简介:熊兴国(1977— ),女,硕士,讲师,研究方向为辩证逻辑. E-mail:xxgxiongxingguo@126.com*通信作者简介:路玲霞(1978— ),女,博士,副教授,研究方向为粗糙集和拟阵理论. E-mail:lu_lingxia@163.com
  • 基金资助:
    国家自然科学基金资助项目(11871189)

MV-algebra valued metric-based fuzzy rough sets

XIONG Xing-guo1, LU Ling-xia2*   

  1. 1. School of Social Science, Hebei GEO University, Shijiazhuang 050018, Hebei, China;
    2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Published:2019-11-06

摘要: 研究基于多值逻辑MV-代数的度量型模糊粗糙集模型,给出-半度量和通常的实数值半度量的关系,证明-半度量和 -相似关系的等价性,研究-半度量诱导的模糊粗糙近似算子的性质及其可定义集的性质。

关键词: MV-代数, -半度量, -相似关系, 模糊粗糙近似算子, 可定义集

Abstract: MV-algebra valued metric-based fuzzy rough set model is defined. The interrelations between -hemimetrics and the standard real valued hemimetrics are investigated. It is shown that -hemimetrics and -similarities are equivalent to each other. The properties of fuzzy rough approximation operators and the related definable sets are studied.

Key words: MV-algebra, -hemimetric, -similarity, fuzzy rough approximation operator, definable set

中图分类号: 

  • O159
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11:341-356.
[2] LIU Guilong. Generalized rough sets over fuzzy lattices[J]. Information Sciences, 2008, 178(6):1651-1662.
[3] LIU Guilong, SAI Ying. Invertible approximation operators of generalized rough sets and fuzzy rough sets[J]. Information Sciences, 2010, 180(11):2221-2229.
[4] MI Jusheng, LEUNG Yee, ZHAO Huiyin, et al. Generalized fuzzy rough sets determined by a triangular norm[J]. Information Sciences, 2008, 178(16):3203-3213.
[5] MI Jusheng, ZHANG Wenxiu. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences, 2004, 160(1/2/3/4):235-249.
[6] MORSI N N, YAKOUT M M. Axiomatics for fuzzy rough sets[J]. Fuzzy Sets and Systems, 1998, 100(1/2/3):327-342.
[7] RADZIKOWSKA A M, KERRE E E. A comparative study of fuzzy rough sets[J]. Fuzzy Sets and Systems, 2002, 126(2):137-155.
[8] THIELE H. On axiomatic characterization of fuzzy approximation operators I[C] // ZIARKO W, YAO Y Y. Proc 2nd International Conference on Rough Sets and Current Trends in Computing, Berlin: Springer-Verlag, 2000: 239-247.
[9] THIELE H. On axiomatic characterization of fuzzy approximation operators II[C] // FITTING M, ORLOWSKA E, WAHO T. Proc 31st IEEE International Symposium on Multiple-Valued Logic. Warsaw: IEEE Computer Society, 2001: 330-335.
[10] 王国俊. MV-代数、BL-代数、R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2):1-15. WANG Guojun. MV-algebras, BL-algebras, R0-algebras and many-valued logic[J]. Fuzzy Systems and Mathematics, 2002, 16(2):1-15.
[11] WU Weizhi, LEUNG Yee, MI Jusheng. On characterizations of (I,T)-fuzzy rough approximation operators[J]. Fuzzy Sets and Systems, 2005, 154(1):76-102.
[12] WU Weizhi, MI Jusheng, ZHANG Wenxiu. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151:263-282.
[13] WU Weizhi, XU Youhong, SHAO Mingwen, et al. Axiomatic characterizations of (S,T)-fuzzy rough approximation operators[J]. Information Sciences, 2016, 334/335:17-43.
[14] WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy approximation operators[J]. Information Sciences, 2004, 159(3/4):233-254.
[15] RADZIKOWSKA A M, KERRE E E. Fuzzy rough sets based on residuated lattices[J]. Lecture Notes in Computer Science, 2004, 3135:278-296.
[16] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58(1):189-201.
[17] DEER L, CORNELIS C, GODO L. Fuzzy neighborhood operators based on fuzzy coverings[J]. Fuzzy Sets and Systems, 2017, 312:17-35.
[18] DENG Tingquan, CHEN Yanmei, XU Wenli, et al. A novel approach to fuzzy rough sets based on a fuzzy covering[J]. Information Sciences, 2007, 177(11):2308-2326.
[19] FENG Tao, ZHANG Shaopu, MI Jusheng. The reduction and fusion of fuzzy covering systems based on the evidence theory[J]. International Journal of Approximate Reasoning, 2012, 53(1):87-103.
[20] LI Tongjun, LEUNG Yee, ZHANG Wenxiu. Generalized fuzzy rough approximation operators based on fuzzy coverings[J]. International Journal of Approximate Reasoning, 2008, 48(3):836-856.
[21] MA Liwen. Two fuzzy covering rough set models and their generalizations over fuzzy lattices[J]. Fuzzy Sets and Systems, 2016, 294:1-17.
[22] YANG Bin, HU Baoqing. A fuzzy covering-based rough set model and its generalization over fuzzy lattice[J]. Information Sciences, 2016, 367/368:463-486.
[23] YAO Wei, SHE Yanhong, LU Lingxia. Metric-based L-fuzzy rough sets: approximation operators and definable sets[J]. Knowledge-Based Systems, 2019, 163:91-102.
[24] MUNDICI D. Advanced Lukasiewicz calculus and MV-algebras[M]. New York: Springer, 2011.
[25] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht, Netherland: Kluwer Academic Publishers, 1998.
[26] GOUBAULT-LARRECQ J. Non-Hausdorff topology and domain theory[M]. Cambridge, UK: Cambridge University Press, 2013.
[27] BĚLOHLÁVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Academic Publishers, 2002.
[28] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1):105-112.
[29] YAO Wei, HAN Sang-Eon, WANG Rongxin. A Stone-type duality for sT0 stratified Alexandrov L-topological spaces[J]. Fuzzy Sets and Systems, 2016, 282:1-20.
[30] LAI Hongliang, ZHANG Dexue. Fuzzy preorder and fuzzy topology[J]. Fuzzy Sets and Systems, 2006, 157(14):1865-1885.
[1] 刘慧珍,辛小龙,王军涛. Monadic MV-代数上的微分[J]. 山东大学学报(理学版), 2016, 51(8): 53-60.
[2] 冯敏1,辛小龙1*,李毅君1,2. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(06): 50-56.
[3] 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张克勇,李春霞,姚建明,李江鑫. 政府补贴下具风险规避的绿色供应链决策及协调[J]. 《山东大学学报(理学版)》, 2019, 54(11): 35 -51 .
[2] 郑京竺,杨海宁,苏烨,秦静. 一个盲公开可验证的矩阵乘积外包计算方案[J]. 《山东大学学报(理学版)》, 2019, 54(11): 1 -11 .
[3] 吴正祥,李宝库. 考虑零售商社会比较行为的双渠道供应链均衡策略[J]. 《山东大学学报(理学版)》, 2019, 54(11): 20 -34 .
[4] 路正玉,周伟,于欢欢,赵娜. 考虑广告溢出效应的博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 63 -70 .
[5] 刘双根,李丹丹,李潇. 基于青铜比例加法链的椭圆曲线标量乘算法[J]. 《山东大学学报(理学版)》, 2019, 54(11): 12 -19 .
[6] 冯丹丹,吴洪博. 拓扑系统中开远域及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(11): 90 -96 .
[7] 曹慧荣,周伟,褚童,周洁. 政府征税与补贴Bertrand博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 52 -62 .