《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 81-89.doi: 10.6040/j.issn.1671-9352.0.2018.674
熊兴国1,路玲霞2*
XIONG Xing-guo1, LU Ling-xia2*
摘要: 研究基于多值逻辑MV-代数的度量型模糊粗糙集模型,给出-半度量和通常的实数值半度量的关系,证明-半度量和 -相似关系的等价性,研究-半度量诱导的模糊粗糙近似算子的性质及其可定义集的性质。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11:341-356. [2] LIU Guilong. Generalized rough sets over fuzzy lattices[J]. Information Sciences, 2008, 178(6):1651-1662. [3] LIU Guilong, SAI Ying. Invertible approximation operators of generalized rough sets and fuzzy rough sets[J]. Information Sciences, 2010, 180(11):2221-2229. [4] MI Jusheng, LEUNG Yee, ZHAO Huiyin, et al. Generalized fuzzy rough sets determined by a triangular norm[J]. Information Sciences, 2008, 178(16):3203-3213. [5] MI Jusheng, ZHANG Wenxiu. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences, 2004, 160(1/2/3/4):235-249. [6] MORSI N N, YAKOUT M M. Axiomatics for fuzzy rough sets[J]. Fuzzy Sets and Systems, 1998, 100(1/2/3):327-342. [7] RADZIKOWSKA A M, KERRE E E. A comparative study of fuzzy rough sets[J]. Fuzzy Sets and Systems, 2002, 126(2):137-155. [8] THIELE H. On axiomatic characterization of fuzzy approximation operators I[C] // ZIARKO W, YAO Y Y. Proc 2nd International Conference on Rough Sets and Current Trends in Computing, Berlin: Springer-Verlag, 2000: 239-247. [9] THIELE H. On axiomatic characterization of fuzzy approximation operators II[C] // FITTING M, ORLOWSKA E, WAHO T. Proc 31st IEEE International Symposium on Multiple-Valued Logic. Warsaw: IEEE Computer Society, 2001: 330-335. [10] 王国俊. MV-代数、BL-代数、R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2):1-15. WANG Guojun. MV-algebras, BL-algebras, R0-algebras and many-valued logic[J]. Fuzzy Systems and Mathematics, 2002, 16(2):1-15. [11] WU Weizhi, LEUNG Yee, MI Jusheng. On characterizations of (I,T)-fuzzy rough approximation operators[J]. Fuzzy Sets and Systems, 2005, 154(1):76-102. [12] WU Weizhi, MI Jusheng, ZHANG Wenxiu. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151:263-282. [13] WU Weizhi, XU Youhong, SHAO Mingwen, et al. Axiomatic characterizations of (S,T)-fuzzy rough approximation operators[J]. Information Sciences, 2016, 334/335:17-43. [14] WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy approximation operators[J]. Information Sciences, 2004, 159(3/4):233-254. [15] RADZIKOWSKA A M, KERRE E E. Fuzzy rough sets based on residuated lattices[J]. Lecture Notes in Computer Science, 2004, 3135:278-296. [16] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58(1):189-201. [17] DEER L, CORNELIS C, GODO L. Fuzzy neighborhood operators based on fuzzy coverings[J]. Fuzzy Sets and Systems, 2017, 312:17-35. [18] DENG Tingquan, CHEN Yanmei, XU Wenli, et al. A novel approach to fuzzy rough sets based on a fuzzy covering[J]. Information Sciences, 2007, 177(11):2308-2326. [19] FENG Tao, ZHANG Shaopu, MI Jusheng. The reduction and fusion of fuzzy covering systems based on the evidence theory[J]. International Journal of Approximate Reasoning, 2012, 53(1):87-103. [20] LI Tongjun, LEUNG Yee, ZHANG Wenxiu. Generalized fuzzy rough approximation operators based on fuzzy coverings[J]. International Journal of Approximate Reasoning, 2008, 48(3):836-856. [21] MA Liwen. Two fuzzy covering rough set models and their generalizations over fuzzy lattices[J]. Fuzzy Sets and Systems, 2016, 294:1-17. [22] YANG Bin, HU Baoqing. A fuzzy covering-based rough set model and its generalization over fuzzy lattice[J]. Information Sciences, 2016, 367/368:463-486. [23] YAO Wei, SHE Yanhong, LU Lingxia. Metric-based L-fuzzy rough sets: approximation operators and definable sets[J]. Knowledge-Based Systems, 2019, 163:91-102. [24] MUNDICI D. Advanced Lukasiewicz calculus and MV-algebras[M]. New York: Springer, 2011. [25] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht, Netherland: Kluwer Academic Publishers, 1998. [26] GOUBAULT-LARRECQ J. Non-Hausdorff topology and domain theory[M]. Cambridge, UK: Cambridge University Press, 2013. [27] BĚLOHLÁVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Academic Publishers, 2002. [28] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1):105-112. [29] YAO Wei, HAN Sang-Eon, WANG Rongxin. A Stone-type duality for sT0 stratified Alexandrov L-topological spaces[J]. Fuzzy Sets and Systems, 2016, 282:1-20. [30] LAI Hongliang, ZHANG Dexue. Fuzzy preorder and fuzzy topology[J]. Fuzzy Sets and Systems, 2006, 157(14):1865-1885. |
[1] | 刘慧珍,辛小龙,王军涛. Monadic MV-代数上的微分[J]. 山东大学学报(理学版), 2016, 51(8): 53-60. |
[2] | 冯敏1,辛小龙1*,李毅君1,2. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(06): 50-56. |
[3] | 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63. |
|