您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 90-96.doi: 10.6040/j.issn.1671-9352.0.2018.532

• • 上一篇    下一篇

拓扑系统中开远域及其应用

冯丹丹,吴洪博*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2019-11-06
  • 作者简介:冯丹丹(1992— ), 女, 硕士研究生, 研究方向为格上拓扑与非经典数理逻辑. E-mail:1990151738@qq.com*通信作者简介:吴洪博(1959— ), 男, 教授, 博士生导师, 研究方向为格上拓扑与非经典数理逻辑. E-mail:wuhb@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61572016);国家自然科学基金资助项目(11531009)

Open remote neighborhoods of topological systems and their applications

FENG Dan-dan, WU Hong-bo*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2019-11-06

摘要: 在拓扑系统中提出了点的开远域的概念并对其性质和应用进行了研究。首先,在拓扑系统中提出了点的开远域的概念,讨论了它的基本性质,并利用开远域系给出了确定拓扑系统的方法;其次,通过开远域系定义了拓扑系统之间的映射在给定点连续的定义,并由此给出了拓扑系统之间连续映射的等价刻画;最后,利用点的开远域系给出T0拓扑系统和T1拓扑系统的等价刻画。

关键词: 拓扑系统, 开远域, 开远域系, 连续映射, T0拓扑系统, T1拓扑系统

Abstract: The concept of open remote neighborhood is proposed in topological system, and its properties with applications are studied. At first, the concept of open remote neighborhood is proposed in topological system, and its basic properties are discussed. Furthermore, a method of determining topological system is given by open remote neighborhood systems. The definition of continuous of mapping at a fixed point between topological systems is defined by open remote neighborhood systems, by which the equivalent form of continuous mapping between topological systems is given. At last, the equivalent forms of some separations of topological systems are given by using the open remote neighborhood systems.

Key words: topological system, open remote neighborhood, open remote neighborhood system, continuous mapping, T0 topological system, T1 topological system

中图分类号: 

  • O141.1
[1] VICKERS S. Topology via logic[M]. Cambridge: Cambridge University Press, 1989.
[2] ENGELKING R. General topology[M]. Warszawa: Panstwowe Wgdawnictwo Naukowe, 1977.
[3] 王国俊. L-fuzzy拓扑空间论[M]. 西安: 陕西师范大学出版社,1988. Wang Guojun. L-fuzzy topological spaces[M]. Xian: Shaanxi Normal University Press, 1988.
[4] WANG Guojun. Theory of topological molecular lattices[J]. Fuzzy Sets and Systems, 1992, 47:351-376.
[5] 王国俊. 拓扑分子格(1)[J]. 科学通报,1983(18):1089-1091. WANG Guojun.Topological molecular lattices(I)[J]. Science Bulletin,1983(18):1089-1091.
[6] 王国俊. 拓扑分子格(1)[J]. 陕西师大学报(自然科学版),1979(1):1-15. WANG Guojun.Topological molecular lattices(I)[J]. Journal of Shaanxi Normal University(Natural Science Edition), 1979(1):1-15.
[7] 王国俊. 广义拓扑分子格[J]. 中国科学(A辑),1983(12):1063-1072. WANG Guojun. Generalized topological molecular lattices[J]. Science in China(Ser A), 1983(12):1063-1072.
[8] 陈仪香. 拓扑系统范畴与子拓扑系统[J]. 陕西师大学报(自然科学版),1994,22(4):19-24. CHEN Yixiang. Category of topological systems and sub-topological systems[J]. Journal of Shaanxi Normal University(Natural Science Edition),1994, 22(4):19-24.
[9] 李世伦. 拓扑系统的分离性[J]. 四川大学学报(自然科学版),2002,39(4):644-648. LI Shilun. The separation of topological system[J]. Journal of Sichuan University(Natural Science Edition), 2002, 39(4):644-648.
[10] 刘菡, 贺伟. 拓扑系统的子系统[J]. 四川大学学报(自然科学版),2007,44(2):229-235. LIU Han, HE Wei. Subsystems of a topological system[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(2):229-235.
[11] 李高林, 徐罗山. 拓扑系统的紧性和分离性[J]. 模糊系统与数学,2007,21(2):6-13. LI Gaolin, XU Luoshan. Compactness and separation in topological systems[J]. Fuzzy Systems and Mathematics, 2007, 21(2):6-13.
[12] 梁基华. Locales上的收敛结构[J]. 数学学报,1995,38(3):294-301. LIANG Jihua. Convergence and cauchy structures on Locales[J]. Acta Mathematica Sinica, 1995, 38(3):294-301.
[13] 梁基华. 一致Locale的乘积[J]. 数学学报,1998,41(2):411-416. LIANG Jihua. The product of uniformity Locale[J]. Acta Mathematica Sinica, 1998, 41(2):411-416.
[14] 樊磊, 郑崇友. 连通Locale的基本性质[J]. 数学进展,2001,30(3):247-251. FAN Lei, ZHENG Chongyou. Basic properties of connected Locale[J]. Advances in Mathematics, 2001, 30(3):247-251.
[15] 郑崇友, 樊磊, 崔宏斌. Frame 与连续格[M]. 北京: 首都师范大学出版社,1994. ZHENG Chongyou, FAN Lei, CUI Hongbin. Introduction to frames and continous lattices[M]. Beijing: Capital Normal University Press, 1994.
[16] 熊金城. 点集拓扑讲义[M].4版. 北京: 高等教育出版社,2003. XIONG Jincheng. Lecture on point set topology[M]. 4thed. Beijing: Higher Education Press, 2003.
[1] 张巧卫,郭志华,曹怀信. 拓扑效应代数[J]. 山东大学学报(理学版), 2017, 52(10): 97-103.
[2] 卢涛,贺伟. 邻域系统[J]. 山东大学学报(理学版), 2016, 51(6): 65-69.
[3] 贺晓丽1, 伏文清2. L-预拓扑空间的局部连通性:可乘性与L-好的推广[J]. J4, 2010, 45(10): 78-82.
[4] 梁少辉 赵彬. FS-Poset 若干性质的研究[J]. J4, 2009, 44(8): 51-55.
[5] 李 宁 . I-fuzzy拓扑空间中的准连续映射[J]. J4, 2007, 42(12): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹慧荣,周伟,褚童,周洁. 政府征税与补贴Bertrand博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 52 -62 .
[2] 张克勇,李春霞,姚建明,李江鑫. 政府补贴下具风险规避的绿色供应链决策及协调[J]. 《山东大学学报(理学版)》, 2019, 54(11): 35 -51 .
[3] 郑京竺,杨海宁,苏烨,秦静. 一个盲公开可验证的矩阵乘积外包计算方案[J]. 《山东大学学报(理学版)》, 2019, 54(11): 1 -11 .
[4] 吴正祥,李宝库. 考虑零售商社会比较行为的双渠道供应链均衡策略[J]. 《山东大学学报(理学版)》, 2019, 54(11): 20 -34 .
[5] 路正玉,周伟,于欢欢,赵娜. 考虑广告溢出效应的博弈模型的动力学分析[J]. 《山东大学学报(理学版)》, 2019, 54(11): 63 -70 .
[6] 刘双根,李丹丹,李潇. 基于青铜比例加法链的椭圆曲线标量乘算法[J]. 《山东大学学报(理学版)》, 2019, 54(11): 12 -19 .
[7] 熊兴国,路玲霞. 基于MV-代数的度量型模糊粗糙集[J]. 《山东大学学报(理学版)》, 2019, 54(11): 81 -89 .