《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 12-19.doi: 10.6040/j.issn.1671-9352.0.2019.028
刘双根,李丹丹,李潇
LIU Shuang-gen, LI Dan-dan, LI Xiao
摘要: 提出一种新的高效安全的椭圆曲线标量乘算法。基于广义的斐波那契数列,提出一个新的加法链,称之为青铜比例加法链(bronze ratio addition chain, BRAC)。该算法每次都迭代执行“3P1+P2”运算,天然具有抵抗简单功耗攻击的性质。BRAC链长较短,结合新的投影坐标,提高了运算效率。实验结果表明,BRAC的标量乘算法比黄金比例加法链(GRAC)快31.73%。
中图分类号:
[1] KOBLITZ Neal. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177):203-209. [2] MILLER Victor. Use of elliptic curves in cryptography[J]. Advances in Cryptology-CRYPTO85, 1986, 19(3):173-193. [3] RIVEST R, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 26(2):96-99. [4] LITASARI L, RAHAADJO B. Design and implementation stegocrypto based on elgamal elliptic curve[C] //International Conferences on Information Technology.[S.l.] :[s.n.] , 2017: 95-99. [5] ZHANG N, TAN S. Elliptic curve scalar multiplication based on Fibonacci number[C] //International Conference on Intelligent Networking and Collaborative Systems.[S.l.] :[s.n.] , 2013: 507-510. [6] MELONI N. New point addition formulae for ECC applications[C] // International Workshop on the Arithmetic of Finite Fields.[S.l.] :[s.n.] , 2007: 189-201. [7] 庞世春, 刘淑芬, 从福仲,等. 一种Montgomery型椭圆曲线的高效标量乘算法[J]. 电子学报, 2011, 39(4):865-868. PANG Shichun, LIU Shufen, CONG Fuzhong, et al. An efficient scalar multiplication algorithm on Montgomery-form elliptic curve[J]. ACTA Electronica Sinica, 2011, 39(4):865-868. [8] KOCHER P C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[C] //International Cryptology Conference on Advances in Cryptology.[S.l.] :[s.n.] , 1996: 104-113. [9] SHAH P G, ARA T, AMBAREEN J, et al. Prevention of simple power analysis attacks in elliptical curve cryptography on WSN platform[C] //International Conference on Emerging Trends in Engineering & Technolog.[S.l.] :[s.n.] , 2015: 51-55. [10] LUO Chao, FEI Yunsi, KAELI David. Effective simple-power analysis attacks of elliptic curve cryptography on embedded systems[C] //International Conference on Computer-Aided Design(ICCAD).[S.l.] :[s.n.] , 2018: 1-7. [11] SUTAR S A. Differential power attack analysis of ultra-lightweight block cipher BORON[C] //International Conference on Electronics, Communication and Aerospace Technology.[S.l.] :[s.n.] , 2018: 365-370. [12] GOUNDAR R R, SHIOTA K, TOYONAGA M. SPA resistant scalar multiplication using golden ratio addition chain method[J]. Iaeng International Journal of Applied Mathematics, 2008, 38(2): 83-88. [13] DOSSO Y, HERBAUT F, MELONI Nicolas, et al. Euclidean addition chains scalar multiplication on curves with efficient endomorphism[J]. Journal of Cryptographic Engineering, 2018, 8(4): 1-17. [14] SRINATE P, CHIEWTHANAKUL B. A variant of the Schnorr signature using an elliptic curve over a field of characteristic two[C] // International Joint Conference on Computer Science and Software Engineering(JCSSE).[S.l.] :[s.n.] 2018: 1-5. [15] RAMDANI M, BENMOHAMMED M, BENBLIDIA N. Distributed solution of scalar multiplication on elliptic curves over Fp for resource-constrained networks[C] //International Conference on Future Networks and Distributed.[S.l.] :[s.n.] , 2018. [16] FARASHAHI R R, WU H, ZHAO C A. Efficient arithmetic on elliptic curves over fields of characteristic three[J]. Selected Areas in Cryptography, 2013(1):135-148. [17] 邓勇. 基于广义Fibonacci和Lucas数的准循环矩阵研究[J]. 重庆师范大学学报(自然科学版), 2015, 32(6): 72-76. DENG Yong. Research of quasi-cyclic matrices based on generalized Fibonacci and Lucas numbers[J]. Journal of Chongqing Normal University(Natural Science), 2015, 32(6): 72-67. [18] 张福玲. 广义Fibonacci数列的和公式[J]. 重庆师范大学学报(自然科学版), 2011, 28(5): 45-48. ZHANG Fuling. The finite sum formula for generalized Fibonacci numbers[J]. Journal of Chongqing Normal University(Natural Science), 2011, 28(5): 45-48. [19] 《数学辞海》编辑委员会. 数学辞海[M]. 太原: 山西教育出版社, 2002. Editorial Board of Mathematical Cihai. Mathematical Cihai[M]. Taiyuan: Shanxi Education Press, 2002. [20] LIU H, DONG Q, LI Y. Efficient ECC scalar multiplication algorithm based on symmetric ternary in wireless sensor networks[C] //Electromagnetics Research Symposium.[S.l.] :[s.n.] , 2017: 879-885. |
[1] | 刘双根,王蓉蓉,李圣雨. GF(3m)上Hessian曲线的三进制Montgomery算法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 96-102. |
[2] | 苏彬庭,许力,方禾,王峰. 基于Diffie-Hellman的无线Mesh网络快速认证机制[J]. 山东大学学报(理学版), 2016, 51(9): 101-105. |
[3] | 李胜东, 吕学强, 孙军, 施水才. Lucene全文索引效率的改进[J]. 山东大学学报(理学版), 2015, 50(07): 76-79. |
[4] | 李伟,许文锋,李宏余. 基于独立子系统的模糊DEA模型研究[J]. J4, 2012, 47(9): 78-83. |
[5] | 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73. |
[6] | 李 森,马 军,赵 嫣,雷景生, . 对数字化科技论文的自动分类研究[J]. J4, 2006, 41(3): 81-84 . |
|