您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (9): 94-104.doi: 10.6040/j.issn.1671-9352.0.2022.430

•   • 上一篇    下一篇

不完备邻域加权多粒度决策理论粗糙集及三支决策

王茜1,2(),张贤勇1,2,*()   

  1. 1. 四川师范大学数学科学学院, 四川 成都 610066
    2. 四川师范大学智能信息与量子信息研究所, 四川 成都 610066
  • 收稿日期:2022-08-19 出版日期:2023-09-20 发布日期:2023-09-08
  • 通讯作者: 张贤勇 E-mail:2055778250@qq.com;xianyongzh@sina.com
  • 作者简介:王茜(1997—), 女, 硕士研究生, 研究方向为粗糙集与粒计算. E-mail: 2055778250@qq.com
  • 基金资助:
    四川省科技计划项目(2021YJ0085);四川省科技计划项目(2022ZYD0001)

Incomplete neighborhood weighted multi-granularity decision-theoretic rough sets and three-way decision

Qian WANG1,2(),Xianyong ZHANG1,2,*()   

  1. 1. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan, China
    2. Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, Sichuan, China
  • Received:2022-08-19 Online:2023-09-20 Published:2023-09-08
  • Contact: Xianyong ZHANG E-mail:2055778250@qq.com;xianyongzh@sina.com

摘要:

关注粒度间差异性和不平衡性, 利用粒度分类能力挖掘粒度权重, 从而构建两种基于粒度加权策略的粗糙集模型实施相关的三支决策。首先, 根据边界域对知识划分的影响定义粒度重要度并诱导粒度权重, 融合权重与条件概率提出不完备邻域加权多粒度决策理论粗糙集, 得到三支决策。然后, 考虑属性的特定限制, 建立不完备邻域加权限制多粒度决策理论粗糙集, 得到相关性质与相互关系。最后, 利用可变三支决策进行实例分析与数据实验, 证实新模型的合理性与优越性。关于不完备邻域多粒度决策理论粗糙集, 两种加权模型优化改进与系统扩张了对应的基础模型, 有利于相关数据分析与决策制定。

关键词: 不完备邻域信息系统, 多粒度粗糙集, 决策理论粗糙集, 三支决策, 粒度重要度

Abstract:

Concerning the differences and imbalances of granularities, the classification capacity of granularity is considered to mine the granularity weight, and two rough set models based on the granularity weighting strategy are constructed to implement three-way decision. At first, the granularity significance is defined by the influence of boundary region for knowledge classification, and it induces the granularity weight; by fusing the granularity weights and condition probabilities, incomplete neighborhood weighted multi-granularity decision-theoretic rough sets are modeled to establish three-way decision. Then considering the specific restriction of important attribute, incomplete neighborhood weighted-restrictive multi-granularity decision-theoretic rough sets are further proposed, and relevant properties and mutual relationships are acquired. At last, example demonstrations and data experiments are performed by variable three-way decision, and the rationality and superiority of new models are verified. Regarding incomplete neighborhood multi-granularity decision-theoretic rough sets, the two weighted models optimally improve and systematically extend corresponding basic models, and they facilitate relevant data analysis and decision making.

Key words: incomplete neighborhood information system, multi-granularity rough set, decision-theoretic rough set, three-way decision, granularity significance

中图分类号: 

  • TP18

表1

三好学生测评信息表"

U A B C class
a1 a2 b1 b2 c1 c2
u1 0.47 0.66 0.76 0.61 0.43 0.31 0
u2 0.73 0.62 0.54 0.76 0.56 0.44 1
u3 0.21 * 0.35 0.26 0.46 0.59 0
u4 0.76 0.61 0.87 0.67 0.26 0.19 1
u5 0.45 0.54 0.67 * 0.75 0.66 0
u6 0.88 0.78 0.34 0.47 0.56 0.62 1
u7 0.17 0.23 0.45 0.36 0.45 0.52 0
u8 0.95 0.86 0.76 0.64 0.67 * 1
u9 0.65 0.57 * 0.57 0.34 0.27 0
u10 0.87 0.81 0.88 0.76 0.47 0.58 1
u11 * 0.64 0.62 0.59 0.54 0.62 0
u12 0.31 0.46 0.46 0.71 0.74 0.65 1

表2

三好学生测评代价函数"

Γ X ~X
aP $\tilde{\lambda}_{\mathrm{PP}}=[0,0.2]$ $\tilde{\lambda}_{\mathrm{PN}}=[0.8,1.2]$
aB $\tilde{\lambda}_{\mathrm{BP}}=[0.2,0.6]$ $\tilde{\lambda}_{\mathrm{BN}}=[0.3,0.6]$
aN $\tilde{\lambda}_{\mathrm{NP}}=[0.8,1.2]$ $\tilde{\lambda}_{\mathrm{NN}}=[0.2,0.4]$

表3

乐观、悲观、平均多粒度决策理论粗糙集模型三支区域"

模型 k POS(X);NEG(X);BND(X)
乐观 0.0 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.2 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.4 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.6 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.8 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
1.0 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
悲观 0.0 Ø;{u2, u4, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.2 Ø;{u2, u4, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.4 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.6 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.8 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
1.0 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
平均 0.0 {u2, u4, u6, u10};{u1, u5, u8, u9, u11, u12};{u3, u7}
0.2 {u2, u4, u6, u10};{u5, u8, u9, u11, u12};{u1, u3, u7}
0.4 {u2, u4, u6, u10};{u5, u8, u9, u11, u12};{u1, u3, u7}
0.6 {u2, u4, u6, u8, u10};{u5, u9, u11, u12};{u1, u3, u7}
0.8 {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
1.0 {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}

表4

两种加权多粒度决策理论粗糙集模型的三支区域"

模型 k $\left(\operatorname{Sig}_{A}(X),\operatorname{Sig}_{B}(X),\operatorname{Sig}_{C}(X)\right)$ $\operatorname{POS}(X) ; \operatorname{NEG}(X) ; \operatorname{BND}(X)$
加权 0.0 (0.5, 0.5, 0.333) {u2, u4, u6, u10};{u3, u5, u8, u9, u11, u12};{u1, u7}
0.2 (0.5, 0.5, 0.333) {u2, u4, u6, u10};{u5, u8, u9, u11, u12};{u1, u3, u7}
0.4 (0.583, 0.5, 0.667) {u2, u4, u6, u8, u10};{u5, u9, u11, u12};{u1, u3, u7}
0.6 (0.583, 0.5, 0.667) {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
0.8 (0.333, 0.286, 0.381) {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
1.0 (0.32, 0.32, 0.36) {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
加权限制 0.0 (0.5, 0.5, 0.333) {u2, u4, u10};{u5, u8, u12};{u1, u3, u6, u7, u9, u11}
0.2 (0.5, 0.5, 0.333) {u2, u4, u10};{u5, u8, u12};{u1, u3, u6, u7, u9, u11}
0.4 (0.583, 0.5, 0.667) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}
0.6 (0.583, 0.5, 0.667) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}
0.8 (0.333, 0.286, 0.381) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}
1.0 (0.32, 0.32, 0.36) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}

表5

UCI数据集描述"

编号 数据集 对象数 条件属性数 决策类数
(a) Wine 178 13 3
(b) Wpbc 198 33 2
(c) Wdbc 569 30 2
(d) Sonar 208 60 2

表6

代价函数"

Γ X ~X
aP $\tilde{\lambda}_{\mathrm{PP}}=[0,0]$ $\tilde{\lambda}_{\mathrm{PN}}=[0.9,1.1]$
aB $\tilde{\lambda}_{\mathrm{BP}}=[0.15,0.35]$ $\tilde{\lambda}_{\mathrm{BN}}=[0.02,0.22]$
aN $\tilde{\lambda}_{\mathrm{NP}}=[0.26,0.46]$ $\tilde{\lambda}_{\mathrm{NN}}=[0,0]$

图1

三种多粒度决策理论粗糙集模型正区域大小变化"

图2

三种多粒度决策理论粗糙集模型边界域大小变化"

图3

三种多粒度决策理论粗糙集模型负区域大小变化"

1 张清华, 薛玉斌, 胡峰, 等. 粗糙集近似不确定性研究[J]. 电子学报, 2016, 44 (7): 1574- 1580.
doi: 10.3969/j.issn.0372-2112.2016.07.008
ZHANG Qinghua , XUE Yubing , HU Feng , et al. Research on uncertainty of approximation aet of rough set[J]. Acta Electronica Siniga, 2016, 44 (7): 1574- 1580.
doi: 10.3969/j.issn.0372-2112.2016.07.008
2 钱文彬, 彭莉莎, 王映龙, 等. 不完备混合决策系统的三支决策模型与规则获取方法[J]. 计算机应用研究, 2020, 37 (5): 1421- 1427.
doi: 10.19734/j.issn.1001-3695.2018.10.0806
QIAN Wenbin , PENG Lisha , WANG Yinglong , et al. Three-way decision model and rule acquisition method for incomplete composite decision system[J]. Application Research of Computers, 2020, 37 (5): 1421- 1427.
doi: 10.19734/j.issn.1001-3695.2018.10.0806
3 XIE Jingjing , HU Baoqing , JIANG Haibo . A novel method to attribute reduction based on weighted neighborhood probabilistic rough sets[J]. International Journal of Approximate Reasoning, 2022, 144, 1- 17.
doi: 10.1016/j.ijar.2022.01.010
4 ABBRUZZES R , GAETA A , LOIA V , et al. Detecting influential news in online communities: an approach based on hexagons of opposition generated by three-way decisions and probabilistic rough sets[J]. Information Sciences, 2021, 578, 364- 337.
doi: 10.1016/j.ins.2021.07.014
5 BARMAN B , PATRA S . Variable precision rough set based unsupervised band selection technique for hyperspectral image classification[J]. Knowledge-Based Systems, 2020, 193, 105414.
doi: 10.1016/j.knosys.2019.105414
6 ZHANG Di , ZHU Ping . Variable radius neighborhood rough sets and attribute reduction[J]. International Journal of Approximate Reasoning, 2022, 150, 98- 121.
doi: 10.1016/j.ijar.2022.08.005
7 YANG Xiaoling , CHEN Hongmei , LI Tianrui , et al. Neighborhood rough sets with distance metric learning for feature selection[J]. Knowledge-Based Systems, 2021, 224, 107076.
doi: 10.1016/j.knosys.2021.107076
8 孙林, 梁娜, 徐久成. 基于自适应邻域互信息与谱聚类的特征选择[J]. 山东大学学报(理学版), 2022, 57 (12): 13- 24.
SUN Lin , LIANG Na , XU Jiucheng . Feature selection using adaptive neighborhood mutual information and spectral clustering[J]. Journal of Shandong University (Nature Science), 2022, 57 (12): 13- 24.
9 LIANG Pei , LEI Dingfei , CHIN Kwaisang , et al. Feature selection based on robust fuzzy rough sets using kernel-based similarity and relative classification uncertainty measures[J]. Knowledge-Based Systems, 2022, 225, 109795.
10 刘盾, 李天瑞, 杨新, 等. 三支决策: 基于粗糙集与粒计算研究视角[J]. 智能系统学报, 2019, 14 (6): 1111- 1120.
LIU Dun , LI Tianrui , YANG Xin , et al. Three-way decisions: research perspectives for rough sets and granular computing[J]. CAAI Transactions on Intelligent Systems, 2019, 14 (6): 1111- 1120.
11 YAO Yiyu . Three-way decision and granular computing[J]. International Journal of Approximate Reasoning, 2018, 103, 107- 123.
doi: 10.1016/j.ijar.2018.09.005
12 QIAN Yuhua , LI Shunyong , LIANG Jiye , et al. Pessimistic rough set based decisions: a multi-granulation fusion strategy[J]. Information Sciences, 2014, 264 (20): 196- 210.
13 YUAN Jingling , CHEN Mincheng , JIANG Tao , et al. Complete tolerance relation based parallel filling for incomplete energy big data[J]. Knowledge-Based Systems, 2017, 132 (15): 215- 225.
14 GE Hao , YANG Chuanjian , XU Yi . Incremental updating three-way regions with variations of objects and attributes in incomplete neighborhood systems[J]. Information Sciences, 2022, 584, 479- 502.
doi: 10.1016/j.ins.2021.10.046
15 刘丹, 徐立新, 李敬伟. 不完备邻域多粒度决策理论粗糙集与三支决策[J]. 计算机应用与软件, 2019, 36 (5): 145- 157.
LIU Dan , XU Lixin , LI Jinwei . Incomplete neighborhood multi-granulation decision-theoretic rough set and three-way decision[J]. Computer Applications and Software, 2019, 36 (5): 145- 157.
16 张贤勇, 苗夺谦, 王国胤, 等. 三支决策与三层分析[M]. 北京: 科学出版社, 2022.
ZHANG Xianyong , MIAO Duoqian , WANG Guoyin , et al. Three-way decision and three-level analysis[M]. Beijing: Science Press, 2022.
17 徐怡, 李宝峰, 李策. 基于权重分布的多粒度粗糙集模型[J]. 模糊系统与数学, 2020, 34 (6): 55- 67.
XU Yi , LI Baofeng , LI Ce . Multi-granulation rough set model based on weight distribution[J]. Fuzzy System and Mathematics, 2020, 34 (6): 55- 67.
18 ZHAO Hua , QIN Keyun . Mixed feature selection in incomplete decision table[J]. Knowledge-Based Systems, 2014, 57, 181- 190.
19 QIANG Yuhua , ZHANG Hu , SANG Yanli , et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55 (1): 225- 237.
20 苗夺谦, 李道国. 粗糙集理论、算法与应用[M]. 北京: 清华大学出版社, 2008: 37- 43.
MIAO Duoqian , LI Daoguo . Rough sets theory algorithms and applications[M]. Beijing: Tsinghua University Press, 2008: 37- 43.
[1] 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79.
[2] 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51.
[3] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66.
[4] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45.
[5] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76.
[6] 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37.
[7] 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48.
[8] 李敏,杨亚锋,雷宇,李丽红. 基于可拓域变化代价最小的最优粒度选择[J]. 《山东大学学报(理学版)》, 2021, 56(2): 17-27.
[9] 张文娟,李进金,林艺东. 基于图的悲观多粒度粗糙集粒度约简[J]. 《山东大学学报(理学版)》, 2021, 56(1): 60-67.
[10] 余鹰,吴新念,王乐为,张应龙. 基于标记相关性的多标记三支分类算法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 81-88.
[11] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
[12] 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61.
[13] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[14] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[15] 张里博, 李华雄, 周献中, 黄兵. 人脸识别中的多粒度代价敏感三支决策[J]. 山东大学学报(理学版), 2014, 49(08): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[3] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[4] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[5] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[6] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[7] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[8] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[9] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[10] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .