您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (7): 37-51.doi: 10.6040/j.issn.1671-9352.4.2022.5896

•   • 上一篇    下一篇

面向属性变化的动态邻域粗糙集知识更新方法

胡成祥1(),张莉2,*(),黄晓玲1,王汇彬1   

  1. 1. 滁州学院计算机与信息工程学院, 安徽 滁州 239000
    2. 苏州大学计算机科学与技术学院, 江苏 苏州 215006
  • 收稿日期:2022-07-26 出版日期:2023-07-20 发布日期:2023-07-05
  • 通讯作者: 张莉 E-mail:chengxiang0550@163.com;zhangliml@suda.edu.cn
  • 作者简介:胡成祥(1984—),男,副教授,博士,研究方向为粗糙集与动态知识发现. E-mail: chengxiang0550@163.com
  • 基金资助:
    安徽省自然科学基金资助项目(2008085MF224);安徽省自然科学基金资助项目(2108085MF215);江苏省高校自然科学研究项目(19KJA550002);江苏省六大人才高峰项目(XYDXX-054);江苏高校优势学科建设工程项目;安徽省教育厅高校自然科学研究重大项目(KJ2020ZD63);安徽省教育厅高校自然科学研究重点项目(2022AH051099);安徽省教育厅高校自然科学研究重点项目(KJ2020A0726);安徽省教育厅高校自然科学研究重点项目(KJ2021A1065);安徽省教育厅高校自然科学研究重点项目(KJ2021B03);安徽省高校优秀青年人才支持计划项目(gxyq2022098)

Dynamic neighborhood rough sets approaches for updating knowledge while attributes generalization

Chengxiang HU1(),Li ZHANG2,*(),Xiaoling HUANG1,Huibin WANG1   

  1. 1. School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, Anhui, China
    2. School of Computer Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
  • Received:2022-07-26 Online:2023-07-20 Published:2023-07-05
  • Contact: Li ZHANG E-mail:chengxiang0550@163.com;zhangliml@suda.edu.cn

摘要:

提出了属性集变化时动态更新三支决策区域的矩阵方法。首先, 利用邻域距离矩阵和邻域关系矩阵等构建了面向决策类的邻域三支决策区域的表示; 其次, 考虑邻域决策系统中的属性变化情况, 分析邻域关系矩阵等相关矩阵的更新策略; 然后利用相关矩阵的更新策略,分别提出了属性增加和属性删除时更新三支决策区域的矩阵方法; 最后,通过公共数据集验证了基于矩阵的增量更新方法的有效性。

关键词: 邻域粗糙集, 动态更新, 三支决策区域, 矩阵

Abstract:

We propose the matrix-based dynamic methods for updating three-way regions in neighborhood decision systems while attributes generalizing. First, we construct the matrix representation strategy of three-way regions for each decision class by means of neighborhood relation matrix and neighborhood distance matrix.Subsequently, considering the variation of the attributes, the updating strategies for related matrices are analyzed by using prior knowledge. Based on these strategies, we propose the matrix-based incremental methods for updating neighborhood three-way regions of each decision class. Finally, we evaluate the efficiency of the proposed incremental methods on public available data sets.

Key words: neighborhood rough set, dynamic updating, three-way regions, matrix

中图分类号: 

  • TP18

表1

实验数据集的描述信息"

编号 数据集 对象数 属性数 决策类数
1 Sonar 208 60 2
2 Ionosphere 351 34 2
3 Diabetic 1 151 19 2
4 Segmentation 2 310 19 7
5 Statlog 6 435 36 6
6 Musk-2 6 598 166 2

表2

实验数据集中关于增量属性集的划分"

编号 数据集 初始属性集 增量属性集
1 Sonar {a1, a2, …, a40} {a41, a42, …, a60}
2 Ionosphere {a1, a2, …, a20} {a21, a22, …, a34}
3 Diabetic {a1, a2, …, a10} {a11, a12, …, a19}
4 Segmentation {a1, a2, …, a10} {a11, a12, …, a19}
5 Statlog {a1, a2, …, a22} {a23, a24, …, a36}
6 Musk-2 {a1, a2, …, a120} {a121, a122, …, a166}

图1

不同的论域大小下增加属性时算法DMUA与算法SMCN的效率分析"

图2

不同属性更新率下算法DMUA与算法SMCN的效率分析"

表3

实验数据集中关于待删除属性集的划分"

编号 数据集 初始属性集 待删除属性集
1 Sonar {a1, a2, …, a60} {a51, a52, …, a60}
2 Ionosphere {a1, a2, …, a34} {a25, a26, …, a34}
3 Diabetic {a1, a2, …, a19} {a13, a14, …, a19}
4 Segmentation {a1, a2, …, a19} {a1, a2, …, a5}
5 Statlog {a1, a2, …, a36} {a1, a2, …, a10}
6 Musk-2 {a1, a2, …, a166} {a1, a2, …, a30}

图3

不同论域大小下删除属性时算法DMUD与算法SMCN的效率分析"

图4

不同属性更新率下算法DMUD与算法SMCN的效率分析"

1 PAWLAK Zdzislaw . Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11, 341- 356.
doi: 10.1007/BF01001956
2 WANG Guoyin , MA Xiao , YU Hong . Monotonic uncertainty measures for attribute reduction in probabilistic rough set model[J]. Inernational Journal of Approximate Reasoning, 2015, 59, 41- 67.
doi: 10.1016/j.ijar.2015.01.005
3 梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J]. 中国科学: 信息科学, 2015, 45 (11): 1355- 1369.
LIANG Jiye , QIAN Yuhua , LI Deyu , et al. Theory and method of granular computing for big data mining[J]. Science China: Information Sciences, 2015, 45 (11): 1355- 1369.
4 ZHANG Chao , BAI Wenhua , LI Deyu , et al. Multiple attribute group decision making based on multigranulation probabilistic models, MULTIMOORA and TPOP in incomplete q-rung orthopair fuzzy information systems[J]. Inernational Journal of Approximate Reasoning, 2022, 143, 102- 120.
doi: 10.1016/j.ijar.2022.01.002
5 吴伟志, 孙钰, 王霞, 等. 不协调广义多尺度决策系统的局部最优尺度组合选择[J]. 模式识别与人工智能, 2021, 34 (8): 689- 700.
WU Weizhi , SUN Yu , WANG Xia , et al. Local optimal scale combination selections in inconsistent generalized multi-scale decision systems[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (8): 689- 700.
6 金铭, 陈锦坤. 基于图论的协调多尺度决策表的最优尺度约简[J]. 山东大学学报(理学版), 2022, 57 (6): 74- 83.
JIN Ming , CHEN Jinkun . Optimal scale reduction based on graph theory in consistent multi-scale decision tables[J]. Journal of Shandong Universit(Natural Science), 2022, 57 (6): 74- 83.
7 HU Qinghua , YU Daren , LIU Jinfu , et al. Neighborhood rough set based heterogeneous feature selection[J]. Informtion Sciences, 2008, 178, 3577- 3594.
doi: 10.1016/j.ins.2008.05.024
8 YAO Yiyu . Neighborhood systems and approximate retrieval[J]. Information Sciences, 2006, 176 (23): 3431- 3452.
doi: 10.1016/j.ins.2006.02.002
9 SUN Lin , WANG Tianxiang , DING Weiping , et al. Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification[J]. Information Sciences, 2021, 578, 887- 912.
doi: 10.1016/j.ins.2021.08.032
10 WANG Qi , QIAN Yuhua , LIANG Xinyan , et al. Local neighborhood rough set[J]. Knowledge-Based Systems, 2018, 153, 53- 64.
doi: 10.1016/j.knosys.2018.04.023
11 CHEN Hongmei , LI Tianrui , FAN Xin , et al. Feature selection for imbalanced data based on neighborhood rough sets[J]. Information Sciences, 2019, 483, 1- 20.
doi: 10.1016/j.ins.2019.01.041
12 YAO Yiyu . Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180, 341- 353.
doi: 10.1016/j.ins.2009.09.021
13 YAO Yiyu . The superiority of three-way decision in probabilistic rough set models[J]. Information Sciences, 2011, 181, 1080- 1096.
doi: 10.1016/j.ins.2010.11.019
14 LIU Dun . The effectiveness of three-way classification with interpretable perspective[J]. Information Sciences, 2021, 567, 237- 255.
doi: 10.1016/j.ins.2021.03.030
15 庞继芳, 宋鹏, 梁吉业. 面向决策分析的多粒度计算模型与方法综述[J]. 模式识别与人工智能, 2022, 34 (12): 1120- 1130.
PANG Jifang , SONG Peng , LIANG Jiye . Review on multi-granulation computing models and methods for decision analysis[J]. Pattern Recognition and Artificial Intelligence, 2021, 34 (12): 1120- 1130.
16 李天瑞, 罗川, 陈红梅, 等. 大数据挖掘的原理与方法: 基于粒计算与粗糙集的视角[M]. 北京: 科学出版社, 2016.
LI Tianrui , LUO Chuan , CHEN Hongmei , et al. The principles and methodologies of big data mining: from the perspectives of granular computing and rough sets[M]. Beijing: Science Press, 2016.
17 YANG Xin , LIU Dun , YANG Xibei , et al. Incremental fuzzy probability decision-theoretic approaches to dynamic three-way approximations[J]. Information Sciences, 2021, 550, 71- 90.
doi: 10.1016/j.ins.2020.10.043
18 李粉宁, 范敏, 李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 山东大学学报(理学版), 2019, 54 (4): 105- 115.
LI Fenning , FAN Min , LI Jinhai . Dynamic updating of object-oriented granular concepts in formal concept analysis[J]. Journal of Shandong University(Natural Science), 2019, 54 (4): 105- 115.
19 ZHANG Qinghua , LV Gongxun , CHEN Yuhong , et al. A dynamic three-way decision model based on the updating of attribute values[J]. Knowledge-Based Systems, 2018, 142, 71- 84.
doi: 10.1016/j.knosys.2017.11.026
20 CHEN Hongmei , LI Tianrui , LUO Chuan , et al. A decision-theoretic rough set approach for dynamic data mining[J]. IEEE Transactions on Fuzzy Systems, 2015, 23 (6): 1958- 1970.
doi: 10.1109/TFUZZ.2014.2387877
21 ZHANG Xiaoyan , LI Jirong , MI Jusheng . Dynamic updating approximations approach to multi-granulation interval-valued hesitant fuzzy information systems with time-evolving attributes[J]. Knowledge-Based Systems, 2022, 238, 107809.
22 YANG Lei , QIN Keyun , SANG Binbin , et al. Dynamic fuzzy neighborhood rough set approach for interval-valued information systems with fuzzy decision[J]. Applied Soft Computing, 2021, 111, 107679.
23 XU Weihua , YUAN Kehua , LI Wentao . Dynamic updating approximations of local generalized multigranulation neighborhood rough set[J]. Applied Intelligence, 2022, 52, 9148- 9173.
24 HU Chengxiang , ZHANG Li . A dynamic framework for updating neighborhood multigranulation approximations with the variation of objects[J]. Information Sciences, 2020, 519, 382- 406.
25 ZHANG Junbo , LI Tianrui , RUAN Da , et al. Neighborhood rough sets for dynamic data mining[J]. International Journal of Intelligent Systems, 2012, 27 (4): 317- 342.
26 HUANG Qianqian , HUANG Yanyong , LI Tianrui , et al. Incremental three-way neighborhood approach for dynamic incomplete hybrid data[J]. Information Sciences, 2022, 597, 358- 391.
27 WANG Feng , WEI Wei , LIANG Jiye . A group incremental approach for feature selection on hybrid data[J]. Soft Computing, 2022, 26, 3663- 3677.
[1] 吴贤君,唐绍诗,王明秋. 融合基础属性和通信行为的移动用户个性化推荐[J]. 《山东大学学报(理学版)》, 2023, 58(9): 81-93.
[2] 杨鲜红,唐国亮,狄振兴. 三角矩阵环上Gorenstein平坦余挠模的黏合[J]. 《山东大学学报(理学版)》, 2023, 58(8): 18-25.
[3] 胡玉文,徐久成,张倩倩. 决策演化集的李雅普诺夫稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(7): 52-59.
[4] 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法[J]. 《山东大学学报(理学版)》, 2023, 58(5): 26-35.
[5] 时俊鹏,张燕兰. 面向对象删除的局部邻域粗糙集动态更新算法[J]. 《山东大学学报(理学版)》, 2023, 58(5): 17-25.
[6] 樊学玲,李莹,赵建立,刘志红. 求解四元数线性系统的一种新方法[J]. 《山东大学学报(理学版)》, 2023, 58(4): 55-64.
[7] 丁欢欢,何兴玥. 一类奇异k-Hessian方程耦合系统的特征值问题[J]. 《山东大学学报(理学版)》, 2023, 58(3): 55-63.
[8] 韦芳,王长鹏. 基于双高斯先验的低秩矩阵分解模型[J]. 《山东大学学报(理学版)》, 2023, 58(3): 101-108.
[9] 郭春娜,姚海楼. 三角矩阵余代数上的有限Gorenstein余表现余模[J]. 《山东大学学报(理学版)》, 2023, 58(2): 88-92.
[10] 代青昂毛,卢博. 三角矩阵环上的(n,d)-内射模[J]. 《山东大学学报(理学版)》, 2023, 58(2): 105-110.
[11] 王力工,郁志明,周枫,陶丽杰,邢露淇. 基于完全图构造的两类整图[J]. 《山东大学学报(理学版)》, 2023, 58(11): 155-159.
[12] 赵霞,朱钇频,杨雅婕,许澜涛. 基于含时网络与随机矩阵理论的投资组合研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 101-110.
[13] 胡玉文,徐久成,徐天贺. 决策演化集的伯努利移位[J]. 《山东大学学报(理学版)》, 2022, 57(8): 13-20.
[14] 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38.
[15] 柳利芳,马园园. 基于多视角对称非负矩阵分解的跨模态信息检索方法[J]. 《山东大学学报(理学版)》, 2022, 57(7): 65-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[3] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[4] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[5] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[6] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[7] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[8] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[9] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[10] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .