《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 55-63.doi: 10.6040/j.issn.1671-9352.0.2022.133
丁欢欢,何兴玥*
DING Huan-huan, HE Xing-yue*
摘要: 考察一类奇异k-Hessian方程耦合系统特征值问题径向解的存在性。通过构造适当的上下解,并利用Schauder不动点定理,证得该问题至少存在一个径向解,并获得该径向解的一些渐近性质。
中图分类号:
[1] CAFFARELLIL A, NIRENBERG L, SPRUCK J. The Dirichlet problem for nonlinear second order elliptic equations(Ⅲ): functions of the eigenvalues of the Hessian[J]. Acta Mathematica, 1985, 155(3):261-301. [2] WANG Xujia. The k-Hessian equation[J]. Lecture Notes in Mathematics, 2009, 1977(2):177-252. [3] LAIR A V, WOOD A W. Large solutions of semilinear elliptic problem[J]. Nonlinear Analysis, 1999, 37(6):805-812. [4] LAIR A V, WOOD A W. Existence of entire large positive solutions of semilinear elliptic systems[J]. Journal of Differential Equations, 2000, 164(2):380-394. [5] ZHANG Zhitao, QI Zexin. On a power-type coupled system of Monge-Ampère equations[J]. Topological Methods in Nonlinear Analysis, 2015, 46(2):717-729. [6] LIU Ronghua, WANG Fanglei, AN Yukun. On radial solutions for Monge-Ampère equations[J]. Turkish Journal of Mathematics, 2018, 42(4):1590-1609. [7] ZHANG Xuemei, FENG Meiqiang. The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation[J]. Journal of Differential Equations, 2019, 267(8):4626-4672. [8] ZHANG Xuemei, FENG Meiqiang. Boundary blow-up solutions to the Monge-Ampère equation: sharp conditions and asymptotic behavior[J]. Advances in Nonlinear Analysis, 2020, 9(1):729-744. [9] HU Shouchuan, WANG Haiyan. Convex solutions of boundary value problems arising from Monge-Ampère equation[J]. Discrete and Continuous Dynamical Systems, 2006, 16(3):705-720. [10] 梁载涛, 单雪梦. k-Hessian方程径向解的存在性与多解性[J]. 数学物理学报, 2021, 41(1):63-68. LIANG Zaitao, SHAN Xuemeng. Existence and multiplicity of radial solutions of k-Hessian equations[J]. Acta Mathematica Scientia A, 2021, 41(1):63-68. [11] 段对花, 高承华, 王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 山东大学学报(理学版), 2022, 57(3):62-67. DUAN Duihua, GAO Chenghua, WANG Jingjing. Existence and nonexistence of blow-up solutions of k-Hessian equations[J]. Journal of Shandong University(Natural Science), 2022, 57(3):62-67. [12] FENG Meiqiang, ZHANG Xuemei. A coupled system of k-Hessian equations[J]. Mathematics Methods Applied Scientia, 2019, 2(4):1-18. [13] WANG Haiyan. Convex solutions of systems arising from Monge-Ampère equations[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2009, 26(8):1-8. [14] GAO Chenghua, HE Xingyue, RAN Maojun. On a power type coupled system of k-Hessian equations[J]. Quaestiones Mathematicae, 2021, 44(11):1593-1612. [15] ZHANG Xinguang, XU Jiafa, JIANG Jiqiang, et al. The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations[J]. Applied Mathematics Letters, 2020, 102(10):106-124. [16] ZHANG Xinguang, XU Pengtao, WU Yongyong. The eigenvalue problem of a singular k-Hessian equation[J]. Applied Mathematics Letters, 2022, 124(9):1-9. [17] JI Xiaohu, BAO Jiguang. Necessary and sufficient conditions on solvability for Hessian inequalities[J]. Proceedings American Mathematical Society, 2010, 138(1):175-188. |
[1] | 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67. |
[2] | 雷林,李笑丽,何承源. r-H-循环矩阵的性质及其逆的多项式算法[J]. 《山东大学学报(理学版)》, 2021, 56(4): 102-110. |
[3] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
[4] | 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74. |
[5] | 苏肖肖. 一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 38-45. |
[6] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[7] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[8] | 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84. |
[9] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
[10] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[11] | 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66. |
[12] | 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90-94. |
[13] | 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95. |
[14] | 李凡凡,刘锡平*,智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. J4, 2013, 48(12): 24-29. |
[15] | 运东方,黄淑祥. 一类奇异抛物型偏微分方程的解的存在性和惟一性[J]. J4, 2012, 47(2): 1-7. |
|