您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 64-76.doi: 10.6040/j.issn.1671-9352.0.2022.431

• • 上一篇    下一篇

解变分不等式与不动点问题的一种修正的惯性投影算法

陈晶晶,杨延涛*   

  1. 延安大学数学与计算机科学学院, 陕西 延安 716000
  • 发布日期:2023-03-02
  • 作者简介:陈晶晶(1998— ),女,硕士研究生,研究方向为非线性泛函分析. E-mail:2671006147@qq.com*通信作者简介:杨延涛(1982— ),男,副教授,硕士生导师,研究方向为非线性泛函分析. E-mail:yadxyyt@163.com
  • 基金资助:
    国家自然科学基金资助项目(61861044);榆林市科技计划项目(CXY-2020-067)

Modified inertial projection algorithm for solving variational inequality and fixed point problems

CHEN Jing-jing, YANG Yan-tao*   

  1. College of Mathematics and Computer Science, Yanan University, Yanan 716000, Shaanxi, China
  • Published:2023-03-02

摘要: 提出了一种修正的惯性投影算法,用以寻找伪单调变分不等式问题的解集与带有半压缩映射的不动点集的公共元,在Lipschitz连续及自适应步长的条件下,证明了由该算法所产生的迭代序列强收敛于某公共元。最后,用数值实验验证了该算法的有效性。

关键词: 伪单调变分不等式, 不动点, 惯性收缩投影算法, 半压缩映射, 强收敛

Abstract: A modified inertial projection algorithm is proposed to find the common element of the set of pseudomonotone variational inequality problems and the fixed point set with a demicontractive mapping, and it is proved that the iterative sequence generated by the algorithm is strongly converged on a common element under the condition that the algorithm is implemented with a self-adaptive step size rule and the Lipschitz continuity. Finally, we implement some computational tests to show the efficiency and advantages of the proposed method.

Key words: pseudomonotone variational inequality, fixed point, inertial projection and contraction method, demicontractive mapping, strong convergence

中图分类号: 

  • O178
[1] SIGNORINI A. Sopra alcune questioni di elastostatica[J]. Atti della Societa Italiana per il Progresso delle Scienze, 1933, 21(2):143-148.
[2] ZHOU Haiyun, QIN Xiaolong. Fixed points of nonlinear operators[M]. Berlin: De Gruyter, 2020.
[3] MAINGÉ P E. The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces[J]. Computers and Mathematics with Applications, 2010, 59(1):74-79.
[4] TAN Bing, FAN Jingjing, QIN Xiaolong. Inertial extragradient algorithms with non-monotonic step sizes for solving variational inequalities and fixed point problems[J]. Advances in Operator Theory, 2021, 6(4):1-29.
[5] GOEBEL K, REICH S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings[M]. New York: Marcel Dekker, 1984.
[6] MAINGÉ P E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems[J]. SIAM Journal on Control and Optimization, 2008, 47(3):1499-1515.
[7] XU Hongkun. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society, 2002, 66(1):240-256.
[8] YAO Y, LIOU Y C, KANG S M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method[J]. Computers & Mathematics with Applications, 2010, 59(11):3472-3480.
[9] LINH H M, REICH S, THONG D V, et al. Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems[J]. Numerical Algorithms, 2022, 89(4):1695-1721.
[10] NADEZHKINA N, TAKAHASHI W. Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings[J]. SIAM Journal on Optimization, 2006, 16(4):1230-1241.
[11] DONG Qiaoli, YANG Jinfeng, YUAN Hanbo. The projection and contraction algorithm for solving variational inequality problems in Hilbert spaces[J]. Journal of Nonlinear and Convex Analysis, 2019, 20(1):111-122.
[12] ALVAREZ F, ATTOUCH H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[J]. Set-valued Analysis, 2001, 9(1):3-11.
[13] ALVAREZ F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space[J]. SIAM Journal on Optimization, 2004, 14(3):773-782.
[14] DONG Qiaoli, CHO Y J, ZHONG Lunlong, et al. Inertial projection and contraction algorithms for variational inequalities[J]. Journal of Global Optimization, 2018, 70(3):687-704.
[15] THONG D V, VINH N T, CHO Y J. New strong convergence theorem of the inertial projection and contraction method for variational inequality problems[J]. Numerical Algorithms, 2020, 84(1):285-305.
[16] THONG D V, HIEU D V. Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems[J]. Optimization, 2018, 67(1):83-102.
[17] TIAN Ming, XU Gang. Improved inertial projection and contraction method for solving pseudomonotone variational inequality problems[J]. Journal of Inequalities and Applications, 2021, 107:1-20.
[18] THONG D V, DUNG V T, LONG L V. Inertial projection methods for finding a minimum-norm solution of pseudomonotone variational inequality and fixed-point problems[J]. Computational and Applied Mathematics, 2022, 41(6):1-25.
[19] THONG D V, HIEU D V. Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems[J]. Numerical Algorithms, 2019, 82:761-789.
[20] TAN Bing, ZHOU Zheng, LI Songxiao. Viscosity-type inertial extragradient algorithms for solving variational inequality prob-lems and fixed point problems[J]. Journal of Applied Mathematics and Computing, 2022, 68(2):1387-1411.
[21] 贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法[J]. 数学物理学报, 2021, 41(6):1897-1911. HE Yuehong, LONG Xianjun. A inertial contraction and projection algorithm for pseudomonotone variational inequality probl-ems[J]. Acta Mathematica Scientia, 2021, 41(6):1897-1911.
[22] 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版),2018, 53(2):38-45. YANG Yantao. Modified subgradient extragradient method for solving monotone variational inequality problems[J]. Journal of Shandong University(Natural Science), 2018, 53(2):38-45.
[23] 杨延涛, 陈晶晶, 周海云. 涉及拟反向强单调算子零点的一个弱收敛结果及其应用[J]. 浙江大学学报(理学版), 2022, 49(1):49-52. YANG Yantao, CHEN Jingjing, ZHOU Haiyun. A weak convergence theorem involving the zero point of quasi-inverse strongly monotone operators with application[J]. Journal of Zhejiang University(Science Edition), 2022, 49(1):49-52.
[24] TAN Bing, FAN Jingjing, LI Songxiao. Self-adaptive inertial extragradient algorithms for solving variational inequality problems[J]. Computational and Applied Mathematics, 2021, 40(1):1-19.
[25] YANG Jun, LIU Hongwei. Strong convergence result for solving monotone variational inequalities in Hilbert space[J]. Numerical Algorithms, 2019, 80(3):741-752.
[1] 张纪凤,张伟,韦慧,倪晋波. p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100.
[2] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[3] 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83.
[4] 张瑞燕. 一类非线性三阶三点边值问题正解的存在性、不存在性及多解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 52-58.
[5] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
[6] 李朝倩. 一类非线性四阶边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 93-100.
[7] 王晶晶,路艳琼. 一类半正非线性弹性梁方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 84-92.
[8] 安佳辉,陈鹏玉. 变分数阶微分方程初值问题解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 41-47.
[9] 王晶晶,路艳琼. 二阶微分方程Neumann边值问题最优正解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(3): 113-120.
[10] 李海侠. 一类具有密度制约的捕食-食饵扩散模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 54-61.
[11] 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41.
[12] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[13] 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78.
[14] 魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 7-12.
[15] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!