《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 102-110.doi: 10.6040/j.issn.1671-9352.0.2020.492
• • 上一篇
雷林,李笑丽,何承源*
LEI Lin, LI Xiao-li, HE Cheng-yuan*
摘要: 提出了r-H-循环矩阵的概念,并得到r-H-循环矩阵的五个等价条件和两个非奇异性的充要条件。此外,利用r-H循环矩阵与多项式之间的关系以及r-H循环矩阵非奇异性和奇异性的充要条件,给出r-H-循环矩阵逆的多项式算法。最后,根据r-H-循环矩阵的结构特点,给出了一些数值例子。
中图分类号:
[1] GELLAI B. Determination of molecular symmetry coordinates using circulant matrices[J]. Journal of Molecular Structure, 1984, 114:21-26. [2] SEBASTIAN R, ISRAEL R. Layout of random circulant graphs[J]. Linear Algebra and Its Applications, 2018, 559:95-113. [3] CARRASQUINHA E, AMADO C, PIRES A M, et al. Image reconstruction based on circulant matrices[J]. Signal Processing Image Communication, 2018:6372-80. [4] STOICA P, HE Hao, LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters, 2009, 16(8):703-706. [5] LIU Xiaoyan, LI Wen, LI Ming, et al. Circulant matrix and conformal mapping for solving partial differential equations[J]. Computers and Mathematics with Applications, 2014, 68(3):67-76. [6] DAVIS P J. Circulant matrices [M]. New York: Chelsea Publishing, 1994. [7] GRAY R M. Toeplitz and circulant matrices: a review[J]. Foundations & Trends in Communications and Information Theory, 2006, 2(3):155-239. [8] TANNER R M, SRIDHARA D, SRIDHARAN A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Transactions on Information Theory, 2004, 50(12):2966-2984. [9] DAVIS P J. Circulant matrices[M]. New York: Wiley, 1979. [10] SHEN Shouqiang, CEN Jianmiao. On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers[J]. Applied Mathematics and Computation, 2010, 216(10):2891-2897. [11] HE Chengyuan, MA Jiangming, ZHANG Kunpeng, et al. The upper bound estimation on the spectral norm of r-circulant matrices with the Fibonacci and Lucas numbers[J]. Journal of Inequalities and Applications, 2015, 2015(1):72. [12] XU Tingting, JIANG Zhaolin, JIANG Ziwu. Explicit determinants of the RFPrLrR Circulant and RLPrFrL circulant matrices involving some famous numbers[J]. Abstract and Applied Analysis, 2014, 2014(2):1-9. [13] BOZKURT D, TAM T Y. Determinants and inverses of r-circulant matrices associated with a number sequence[J]. Linear and Multilinear Algebra, 2014, 63(10):1-10. [14] JIANG Zhaolin, LI Juan, SHEN Nuo. On explicit determinants of RFPLR and RFPLL circulant matrices involving Pell numbers in information theory[C] //International Conference on Information Computing and Applications. Berlin: Springer, 2012: 364-370. [15] JIANG Xiaoyu, HONG K. Exact determinants of some special circulant matrices involving four kinds of famous numbers[J]. Abstract and Applied Analysis, 2014, 2014:1-12. [16] JIANG Zhaolin, ZHOU Zhangxin. Non-singularity on r-circulant matrices[J]. Mathematics in Practice and Theory, 1995(2):52-58. [17] HE Chengyuan, WANG Xiaoye. The discriminance for a special class of circulant matrices and their diagonalization[J]. Applied Mathematics and Computation, 2014, 238:7-12. [18] CLINE R E, PLEMMONS R J, WORM G. Generalized inverses of certain Toeplitz matrices[J]. Linear Algebra and Its Applications, 1974, 8(1):25-33. [19] JIANG Zhaolin, CHEN Ruli. Fast algorithms for solving RFMrLrR circulant linear systems in communication[C] //International Conference on Information Computing and Applications. Berlin: Springer, 2013. |
[1] | 尹娇娇,邵勇,韩金. 反环上的e-可逆矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(4): 67-73. |
[2] | 古丽沙旦木·玉奴斯,阿布都卡的·吾甫. 广义逆的Gröbner-Shirshov基方法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 54-57. |
[3] | 张敏情,周能,刘蒙蒙,王涵,柯彦. 基于Paillier的同态加密域可逆信息隐藏[J]. 《山东大学学报(理学版)》, 2020, 55(3): 1-8,18. |
[4] | 庞永锋,魏银,王权. Drazin序的若干性质[J]. 《山东大学学报(理学版)》, 2020, 55(2): 33-42. |
[5] | 孙晓青,肖燕婷,崔冉冉. 关于环的Q-clean性及Q-clean corner的讨论[J]. 《山东大学学报(理学版)》, 2020, 55(2): 79-83. |
[6] | 张凌,任雪芳. 非常态信息系统与逆P-增广矩阵关系[J]. 《山东大学学报(理学版)》, 2019, 54(9): 15-21. |
[7] | 刘萤,曹小红. 一致可逆性质与Weyl定理的判定[J]. 《山东大学学报(理学版)》, 2019, 54(6): 112-117. |
[8] | 乔虎生,冯乐婷. 序逆S-系对序幺半群的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(6): 25-29. |
[9] | 卢政宇,李光松,申莹珠,张彬. 基于连续特征的未知协议消息聚类算法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 37-43. |
[10] | 于倩倩,魏广生. Jacobi矩阵的逆谱问题及其应用[J]. 山东大学学报(理学版), 2018, 53(8): 66-76. |
[11] | 王守峰. 具有可乘逆断面的正则半群的λ-半直积[J]. 山东大学学报(理学版), 2018, 53(4): 20-23. |
[12] | 孙泽锐,王继军,李国祥,夏国恩. 基于插值图像的可逆信息隐藏算法[J]. 山东大学学报(理学版), 2018, 53(1): 46-52. |
[13] | 朱丹,谢晓尧,徐洋,夏梦婷. 基于云模型与贝叶斯反馈的网络安全等级评估方法[J]. 山东大学学报(理学版), 2018, 53(1): 53-62. |
[14] | 施章磊,李维国. A†分级硬阈值追踪[J]. 山东大学学报(理学版), 2017, 52(8): 58-64. |
[15] | 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93. |
|