您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 102-110.doi: 10.6040/j.issn.1671-9352.0.2020.492

• • 上一篇    

r-H-循环矩阵的性质及其逆的多项式算法

雷林,李笑丽,何承源*   

  1. 西华大学理学院, 四川 成都 610039
  • 发布日期:2021-04-13
  • 作者简介:雷林(1995— ),女,硕士研究生,助教,研究方向为矩阵理论及应用. E-mail:leilinpanssye@163.com*通信作者简介:何承源(1961— ),男,教授,研究方向为矩阵理论及应用. E-mail:chengyuanh@163.com
  • 基金资助:
    四川省应用基础研究计划资助项目(2013JY0178)

Properties for r-H-circulant matrices and polynomial algorithm of their inverse

LEI Lin, LI Xiao-li, HE Cheng-yuan*   

  1. School of Science, Xihua University, Chengdu 610039, Sichuan, China
  • Published:2021-04-13

摘要: 提出了r-H-循环矩阵的概念,并得到r-H-循环矩阵的五个等价条件和两个非奇异性的充要条件。此外,利用r-H循环矩阵与多项式之间的关系以及r-H循环矩阵非奇异性和奇异性的充要条件,给出r-H-循环矩阵逆的多项式算法。最后,根据r-H-循环矩阵的结构特点,给出了一些数值例子。

关键词: r-H-循环矩阵, 非奇异性, 逆, 自反广义逆, 多项式算法

Abstract: The concept of r-H-circulant matrices is proposed, and five equivalent conditions and two necessary and sufficient conditions for nonsingularity of r-H-circulant matrices are gained. Furthermore, utilizing the relationship between the r-H-circulant matrices and polynomial and the sufficient and necessary conditions for nonsingular and singular of r-H-circulant matrices, a polynomial algorithm for the inverse of the r-H-circulant matrices is given. Finally, a number of examples according to the structural characteristics of r-H-circulant matrices is provided.

Key words: r-H-circulant matrices, nonsingularity, inverse, reflexive generalized inverse, polynomial algorithm

中图分类号: 

  • O241.6
[1] GELLAI B. Determination of molecular symmetry coordinates using circulant matrices[J]. Journal of Molecular Structure, 1984, 114:21-26.
[2] SEBASTIAN R, ISRAEL R. Layout of random circulant graphs[J]. Linear Algebra and Its Applications, 2018, 559:95-113.
[3] CARRASQUINHA E, AMADO C, PIRES A M, et al. Image reconstruction based on circulant matrices[J]. Signal Processing Image Communication, 2018:6372-80.
[4] STOICA P, HE Hao, LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters, 2009, 16(8):703-706.
[5] LIU Xiaoyan, LI Wen, LI Ming, et al. Circulant matrix and conformal mapping for solving partial differential equations[J]. Computers and Mathematics with Applications, 2014, 68(3):67-76.
[6] DAVIS P J. Circulant matrices [M]. New York: Chelsea Publishing, 1994.
[7] GRAY R M. Toeplitz and circulant matrices: a review[J]. Foundations & Trends in Communications and Information Theory, 2006, 2(3):155-239.
[8] TANNER R M, SRIDHARA D, SRIDHARAN A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Transactions on Information Theory, 2004, 50(12):2966-2984.
[9] DAVIS P J. Circulant matrices[M]. New York: Wiley, 1979.
[10] SHEN Shouqiang, CEN Jianmiao. On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers[J]. Applied Mathematics and Computation, 2010, 216(10):2891-2897.
[11] HE Chengyuan, MA Jiangming, ZHANG Kunpeng, et al. The upper bound estimation on the spectral norm of r-circulant matrices with the Fibonacci and Lucas numbers[J]. Journal of Inequalities and Applications, 2015, 2015(1):72.
[12] XU Tingting, JIANG Zhaolin, JIANG Ziwu. Explicit determinants of the RFPrLrR Circulant and RLPrFrL circulant matrices involving some famous numbers[J]. Abstract and Applied Analysis, 2014, 2014(2):1-9.
[13] BOZKURT D, TAM T Y. Determinants and inverses of r-circulant matrices associated with a number sequence[J]. Linear and Multilinear Algebra, 2014, 63(10):1-10.
[14] JIANG Zhaolin, LI Juan, SHEN Nuo. On explicit determinants of RFPLR and RFPLL circulant matrices involving Pell numbers in information theory[C] //International Conference on Information Computing and Applications. Berlin: Springer, 2012: 364-370.
[15] JIANG Xiaoyu, HONG K. Exact determinants of some special circulant matrices involving four kinds of famous numbers[J]. Abstract and Applied Analysis, 2014, 2014:1-12.
[16] JIANG Zhaolin, ZHOU Zhangxin. Non-singularity on r-circulant matrices[J]. Mathematics in Practice and Theory, 1995(2):52-58.
[17] HE Chengyuan, WANG Xiaoye. The discriminance for a special class of circulant matrices and their diagonalization[J]. Applied Mathematics and Computation, 2014, 238:7-12.
[18] CLINE R E, PLEMMONS R J, WORM G. Generalized inverses of certain Toeplitz matrices[J]. Linear Algebra and Its Applications, 1974, 8(1):25-33.
[19] JIANG Zhaolin, CHEN Ruli. Fast algorithms for solving RFMrLrR circulant linear systems in communication[C] //International Conference on Information Computing and Applications. Berlin: Springer, 2013.
[1] 尹娇娇,邵勇,韩金. 反环上的e-可逆矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(4): 67-73.
[2] 古丽沙旦木·玉奴斯,阿布都卡的·吾甫. 广义逆的Gröbner-Shirshov基方法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 54-57.
[3] 张敏情,周能,刘蒙蒙,王涵,柯彦. 基于Paillier的同态加密域可逆信息隐藏[J]. 《山东大学学报(理学版)》, 2020, 55(3): 1-8,18.
[4] 庞永锋,魏银,王权. Drazin序的若干性质[J]. 《山东大学学报(理学版)》, 2020, 55(2): 33-42.
[5] 孙晓青,肖燕婷,崔冉冉. 关于环的Q-clean性及Q-clean corner的讨论[J]. 《山东大学学报(理学版)》, 2020, 55(2): 79-83.
[6] 张凌,任雪芳. 非常态信息系统与逆P-增广矩阵关系[J]. 《山东大学学报(理学版)》, 2019, 54(9): 15-21.
[7] 刘萤,曹小红. 一致可逆性质与Weyl定理的判定[J]. 《山东大学学报(理学版)》, 2019, 54(6): 112-117.
[8] 乔虎生,冯乐婷. 序逆S-系对序幺半群的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(6): 25-29.
[9] 卢政宇,李光松,申莹珠,张彬. 基于连续特征的未知协议消息聚类算法[J]. 《山东大学学报(理学版)》, 2019, 54(5): 37-43.
[10] 于倩倩,魏广生. Jacobi矩阵的逆谱问题及其应用[J]. 山东大学学报(理学版), 2018, 53(8): 66-76.
[11] 王守峰. 具有可乘逆断面的正则半群的λ-半直积[J]. 山东大学学报(理学版), 2018, 53(4): 20-23.
[12] 孙泽锐,王继军,李国祥,夏国恩. 基于插值图像的可逆信息隐藏算法[J]. 山东大学学报(理学版), 2018, 53(1): 46-52.
[13] 朱丹,谢晓尧,徐洋,夏梦婷. 基于云模型与贝叶斯反馈的网络安全等级评估方法[J]. 山东大学学报(理学版), 2018, 53(1): 53-62.
[14] 施章磊,李维国. A分级硬阈值追踪[J]. 山东大学学报(理学版), 2017, 52(8): 58-64.
[15] 王守峰. 具有可乘逆断面的正则半群上的预同态和限制积[J]. 山东大学学报(理学版), 2017, 52(8): 90-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!