《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 112-117.doi: 10.6040/j.issn.1671-9352.0.2018.584
• • 上一篇
刘萤,曹小红*
LIU Ying, CAO Xiao-hong*
摘要: 令H表示无限维复可分的Hilbert空间,B(H)为H上有界线性算子的全体。对算子T∈B(H)而言, 若对于任意算子S∈B(H),TS和ST同时可逆或同时不可逆,则称算子T为一致可逆算子。本文根据算子的一致可逆性质,给出了算子T与其算子演算满足Weyl定理的充要条件。
中图分类号:
[1] KATO T. Perturbation theory for linear operator[M]. New York: Springer-Verlag, 1966. [2] GOHBERG I, GOLDBERG S, KAASHORK M A. Unbounded linear operators[J]. American Mathematical Monthly, 1968, 75(7):288-322. [3] HARTE R. On Kato non-singularity[J]. Studia Mathematica,1996, 117(2):107-114. [4] GONG Weibang, HAN Deguang. Spectrum of the products of operators and compact perturbations[J]. Proceedings of The American Mathematical Society, 1994, 120(3):755-760. [5] DJORDJEVIC D S. Operators consistent in regularity[J]. Publicationes Mathematicae Debrecen, 2002, 60(1):1-15. [6] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. [7] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. [8] LI Chunguang, ZHU Sen, FENG Youling. Weyls theorem for functions of operators and approximation[J]. Integral Equations and Operator Theory, 2010, 67(4):481-497. [9] CURTO R E, HAN Y M. Weyls theorem for algebraically paranormal operators[J]. Integral Equations and Operator Theory, 2003, 47(3):307-341. [10] AN I J, HAN Y M. Weyls theorem for algebraically quasi-class a operators[J]. Integral Equations and Operator Theory, 2008, 62(1):1-10. [11] SHI Weijuan, CAO Xiaohong. Weyls theorem for the square of operator and perturbations[J]. Communications in Contemporary Mathematics, 2015, 17(1):1-11. [12] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. [13] DUGGAL B P. The Weyl spectrum of p-hyponormal operators[J]. Integral Equations and Operator Theory, 1997, 29(2):197-201. [14] CAO Xiaohong. Analytically class operators and Weyls theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):795-803. [15] TAYLOR A E. Theorems on ascent, descent, nullity and defect of linear operators[J]. Mathematische Annalen, 1996, 163(1):18-49. [16] HARTE R. Invertibility and singularity for bounded linear operators[M]. New York: Marcel Dekker, 1988. [17] HARTE R, LEE W Y. Another note on Weyls theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5):2115-2124. |
[1] | 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1-7. |
[2] | 刘艳芳,王玉玉. Adams谱序列E2项的一些注记[J]. 山东大学学报(理学版), 2018, 53(8): 43-48. |
[3] | 于倩倩,魏广生. Jacobi矩阵的逆谱问题及其应用[J]. 山东大学学报(理学版), 2018, 53(8): 66-76. |
[4] | 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51-55. |
[5] | 张莹,曹小红,戴磊. 有界线性算子的Weyl定理的判定[J]. 山东大学学报(理学版), 2018, 53(10): 82-87. |
[6] | 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(4): 6-12. |
[7] | 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67. |
[8] | 戴磊,曹小红. (z)性质与Weyl型定理[J]. 山东大学学报(理学版), 2017, 52(2): 60-65. |
[9] | 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83. |
[10] | 王国辉, 杜小妮, 万韫琦, 李芝霞. 周期为pq的平衡四元广义分圆序列的线性复杂度[J]. 山东大学学报(理学版), 2016, 51(9): 145-150. |
[11] | 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21. |
[12] | 刘玉梅,王海蓉,刘淑芳. 荧光光谱法研究羟基化单壁碳纳米管与牛血清白蛋白/血红蛋白的相互作用[J]. 山东大学学报(理学版), 2016, 51(3): 29-33. |
[13] | 马飞翔,廖祥文,於志勇,吴运兵,陈国龙. 基于知识图谱的文本观点检索方法[J]. 山东大学学报(理学版), 2016, 51(11): 33-40. |
[14] | 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9. |
[15] | 杨功林, 纪培胜. Hilbert C*-模中本原理想子模的一些性质[J]. 山东大学学报(理学版), 2014, 49(10): 50-55. |
|