您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 55-64.doi: 10.6040/j.issn.1671-9352.0.2022.013

• • 上一篇    

求解四元数线性系统的一种新方法

樊学玲,李莹*,赵建立,刘志红   

  1. 聊城大学数学科学学院, 山东 聊城 252000
  • 发布日期:2023-03-27
  • 作者简介:樊学玲(1999— ),女,硕士研究生,研究方向为线性系统理论. E-mail:17852262206@163.com*通信作者简介:李莹(1974— ),女,博士,教授,研究方向为线性系统理论. E-mail:liyingld@163.com
  • 基金资助:
    国家自然科学基金资助项目(62176112);山东省自然科学基金资助项目(ZR2020MA053);聊城大学科研基金资助项目(318011921)

A new method for solving quaternion linear system

FAN Xue-ling, LI Ying*, ZHAO Jian-li, LIU Zhi-hong   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, Shandong, China
  • Published:2023-03-27

摘要: 利用矩阵半张量积以及矩阵的H-表示方法求解四元数Stein方程的循环解。首先提出了四元数矩阵的矩阵半张量积的一些新结论,进而利用这些结论将四元数Stein方程转化为具有独立变量的矩阵方程;然后利用循环矩阵的H-表示以及经典矩阵理论给出原系统循环解存在的充要条件及通解表达式;最后通过相应的数值算法验证该算法的有效性,并将该方法用于求解线性时变系统中的四元数Stein方程。

关键词: 四元数Stein方程, 矩阵半张量积, H-表示, 循环矩阵

Abstract: The circulant solution of quaternion Stein equation is solved by using semi-tensor product of matrices and H-representation method. First, some new conclusions about the semi-tensor product of quaternion matrices are presented. The quaternion Stein equation is transformed into a matrix equation with independent variables by using this conclusions. Then, the sufficient and necessary conditions for the existence of the circulant solution and the general solution expression of the original system are given by using H-representation of the circulant matrix and classical matrix theory. Finally, the effectiveness of the algorithm is verified by the corresponding numerical algorithm, and the method is applied to solve quaternion Stein equations in linear time-varying systems.

Key words: quaternion Stein equation, semi-tensor product of matrices, H-representation, circulant matrix

中图分类号: 

  • O241.6
[1] CHENG Daizhan, ZHAO Yin, XU Tingting. Receding horizon based feedback optimization for mix-valued logical networks[J]. IEEE Transactions on Automatic Control, 2015, 60(12):3362-3366.
[2] CHENG Daizhan, LIU Ting, ZHANG Kuize, et al. On decomposed subspaces of finite games[J]. IEEE Transactions on Automatic Control, 2016, 61(11):3651-3656.
[3] LIU Zhenbin, WANG Yuzhen, LI Haitao. New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits[J]. IET Control Theory and Applications, 2014, 8(8):554-560.
[4] CHENG Daizhan, FENG June, LV Hongli. Solving fuzzy relational equations via semi-tensor product[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(2):390-396.
[5] 丁文旭,李莹,王栋,等.求解四元数矩阵方程的矩阵半张量积方法[J].山东大学学报(理学版),2021,56(6):103-110. DING Wenxu, LI Ying, WANG Dong, et al. Solutions of the quaternion matrix equation based on semi-tensor product of matrices[J]. Journal of Shandong University(Natural Science), 2021, 56(6):103-110.
[6] 王栋,李莹,丁文旭.四元数矩阵方程∑ki=1AiXiBi=C最小二乘问题的半张量积解法[J].聊城大学学报(自然科学版),2022,35(1):22-29. WANG Dong, LI Ying, DING Wenxu. The semi tensor product method to solve the least squares problem of the quaternion matrix equation ∑ki=1AiXiBi=C[J]. Journal of Liaocheng University(Natural Science), 2022, 35(1):22-29.
[7] HYLAND D, BERNSTEIN D. The optimal projection equations for fixed-order dynamic compensation[J]. IEEE Transactions on Automatic Control, 1984, 29(11):1034-1037.
[8] KENNEY C S, LAUB A J. The matrix sign function[J]. IEEE Transactions on Automatic Control, 1995, 40(8):1330-1348.
[9] SORENSEN D C, ANTOULAS A C. The Sylvester equation and approximate balanced reduction[J]. Linear Algebra and its Applications, 2002, 351/352(2):671-700.
[10] LAUB A J, HEATH M T, PAIGE C C, et al. Computation of balancing transformations and other applications of simultaneous diagonalization algorithms[J]. IEEE Transactions on Automatic Control, 1987, 32(2):115-122.
[11] ROBERTS J D. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function[J]. International Journal of Control, 1980, 32(4):677-687.
[12] ZHANG Yunong, JIANG Danchi, WANG Jun. A recurrent neural network for solving Sylvester equation with time-varying coefficients[J]. IEEE Transactions on Neural Networks, 2002, 13(5):1053-1063.
[13] YAPRAK G D, MUHAMMET K. A computational method for large-scale differential symmetric Stein equation[J]. Mathematical Methods in the Applied Sciences, 2019, 42(16):5438-5445.
[14] ESSOMANDA K, ANGELO E K. About the Stein equation for the generalized inverse Gaussian and Kummer distributions[J]. ESAIM:Probability and Statistics, 2020, 24:607-626.
[15] 毛纲源.循环矩阵及其在分子振动中的应用[M].武汉:华中理工大学出版社,1995. MAO Gangyuan. Cyclic matrix and its application in molecular vibration[M]. Wuhan: Huazhong University of Science and Technology Press, 1995.
[16] 王新梅,肖国镇.纠错码:原理与方法[M].西安:西安电子科技大学出版社,1991. WANG Xinmei, XIAO Guozhen. Error correcting codes:principles and methods[M]. Xian: Xidian University Press, 1991.
[17] 梁国平,邵秀民.循环矩阵及其在结构计算中的应用(Ⅱ)[J].计算数学,1981(3):255-261. LIANG Guoping, SHAO Xioumin. The circulant matrix and its applications in the computation of structures(Ⅱ)[J]. Mathematica Numerica Sinica, 1981(3):255-261.
[18] 李建华,赵胜芝,赵军,等.循环与广义循环组合系统的块解耦方法[J].东北大学学报(自然科学版),2003,24(3):205-208. LI Jianhua, ZHAO Shengzhi, ZHAO Jun, et al. An approach to block decoupling for circulant and generalized circulant composite systems[J]. Journal of Northeastern University(Natural Science), 2003, 24(3):205-208.
[19] 岑建苗.对角因子循环矩阵的谱分解及其应用[J].纯粹数学与应用数学,1998,14(1):47-54. CEN Jianmiao. Spectral decomposition of diagonally factor circulant matrices and its application[J]. Pure and Applied Mathematics, 1998, 14(1):47-54.
[20] 董耀.应用循环分块原理求解高阶矩阵的新方法[J].测绘通报,1987(1):19-20,39. DONG Yao. A new method for the application of the principle of recursive partitioning to the solution of high order matrix[J]. Bulletin of Surveying and Mapping, 1987(1):19-20,39.
[21] ZHANG Weihai, CHEN Borsen. H-representation and applications to generalized Lyapunov equations and linear stochastic systems[J]. IEEE Transactions on Automatic Control, 2012, 57(12):3009-3022.
[22] YUAN Shifang, LIAO Anping, LEI Yuan. Least squares Hermitian solution of the matrix equation(AXB,CXD)=(E,F)with the least norm over the skew field of quaternions[J]. Mathematical and Computer Modelling, 2008, 48(1/2):91-100.
[23] 程代展,齐洪胜.矩阵半张量积讲义卷一:基本理论与多线性运算[M].北京:科学出版社,2020. CHENG Daizhan, QI Hongsheng. Lecture notes in semi-tensor product of matrices:basic theory and multilinear operation[M]. Beijing: Science Press, 2020.
[24] CHENG Daizhan, QI Hongsheng, XUE Ancheng. A survey on semi-tensor product of matrices[J]. Journal of Systems Science and Complexity, 2007, 20(2):304-322.
[25] 李东方,刘会彩,张锦,等.左半张量积在矩阵方程中的应用[J].数学的实践与认识,2021,51(18):219-224. LI Dongfang, LIU Huicai, ZHANG Jin, et al. The applications of left semi-tensor product in matrix equation[J]. Mathematics in Practice and Theory, 2021, 51(18):219-224.
[26] 戴华.矩阵论[M].北京:科学出版社,2001. DAI Hua. Matrix theory[M]. Beijing: Science Press, 2001.
[1] 丁文旭,李莹,王栋,赵建立. 求解四元数矩阵方程的矩阵半张量积方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 103-110.
[2] 雷林,李笑丽,何承源. r-H-循环矩阵的性质及其逆的多项式算法[J]. 《山东大学学报(理学版)》, 2021, 56(4): 102-110.
[3] 程代展. 基于图形的网络演化博弈的拓扑结构[J]. 《山东大学学报(理学版)》, 2021, 56(10): 11-22.
[4] 刘静姝,王莉,刘惊雷. 基于循环矩阵投影的Nyström扩展[J]. 《山东大学学报(理学版)》, 2020, 55(7): 55-66.
[5] 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51.
[6] 李静,何承源. 求解首尾差循环矩阵逆与广义逆的快速算法[J]. J4, 2013, 48(6): 96-99.
[7] 程代展,赵寅,徐相如. 混合值逻辑及其应用[J]. 山东大学学报(理学版), 2011, 46(10): 32-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!