《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 11-22.doi: 10.6040/j.issn.1671-9352.9.2021.001
程代展
CHENG Dai-zhan
摘要: 对基于图形的网络演化博弈,首先求出典型结点策略演化方程,进而给出将结点方程组合成网络局势演化方程的方法。利用局势演化方程,将计算逻辑动态系统不动点与极限环的公式推广用于图形的网络演化博弈。然后,介绍某玩家单独更新的局势演化方程,并依此给出网络演化博弈纯纳什均衡点计算公式。
中图分类号:
[1] BRAMOULLE Y, KRANTON R. Games played on networks[M] //BRAMOULLE Y, GALEOTTI A, ROGERS B, et al. The Oxford Handbook of the Economics of Networks, Chapter 5. Oxford: Oxford University Press, 2016: 83-112. [2] CAO Z G, QIN C Z, YANG X G, et al. Dynamic matching pennies on networks[J]. International Journal of Game Theory, 2019, 48(3):887-920. doi:10.1007/s00182-019-00665-5. [3] CHENG D Z, QI H S. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2251-2258. doi:10.1109/TAC.2010.2043294. [4] CHENG D Z, QI H S, LI Z. Analysis and control of Boolean networks: a semi-tensor product Approach[M]. London: Springer, 2011. [5] CHENG D Z, QI H S, ZHAO Y. An introduction to semi-tensor product of matrices and its applications[M]. Singapore: World Scientific, 2012. DOI:10.1142/8323. [6] CHENG D Z. On finite potential games[J]. Automatica, 2014, 50(7):1793-1801. doi:10.1016/j.automatica.2014.05.005. [7] CHENG D Z, HE F H, QI H S, et al. Modeling, analysis and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415. doi:10.1109/TAC.2015.2404471. [8] CHENG D Z, LIU T, ZHANG K Z, et al. On decomposed subspaces of finite games[J]. IEEE Transactions on Automatic Control, 2016, 61(11):3651-3656. doi:10.1109/TAC.2016.2525936. [9] CHENG D Z, WU Y H, ZHAO G D, et al. A comprehensive survey on STP approach to finite games[EB/OL]. [2021-06-30]. J Sys Sci Compl(to appear), http://arxiv.org/abs/2106.16086. [10] CHIAPPORI P A, LEVITT S, GROSECLOSE T. Testing mixed-strategy equilibria when players are heterogeneous: the case of penalty kicks in soccer[J]. American Economic Review, 2002, 92(4):1138-1151. doi:10.1257/00028280260344678. [11] EASLEY D, KLEINBERG J. Networks, crowds, and markets: reasoning about a highly connected world [M]. Cambridge: Cambridge University Press, 2010. DOI:10.1017/cbo9780511761942. [12] GUO P L, WANG Y Z, LI H T. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method[J]. Automatica, 2013, 49(11):3384-3389. doi:10.1016/j.automatica.2013.08.008. [13] HAO Y Q, CHENG D Z. On skew-symmetric games[J]. Journal of the Franklin Institute, 2018, 355(6):3196-3220. doi:10.1016/j.jfranklin.2018.02.015. [14] HILBE C, NOWAK M A, SIGMUND K. Evolution of extortion in iterated prisoners dilemma games[J]. Proc Natl Acad Sci, 2013, 110(17):6913-6918. doi:10.1073/pnas.1214834110. [15] HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 1986. [16] JACKSON MO, ZENOU Y. Games on networks[M] //PEYTON Y, ZAMIR S. Handbook of game Theory: Chapter 3, Vol 4. Amsterdam: Elsevier Science, 2014: 95-164. [17] LI Z Q, CHENG D Z. Algebraic approach to dynamics of multivalued networks[J]. International Journal of Bifurcation and Chaos, 2010, 20(3):561-582. doi:10.1142/s0218127410025892. [18] PRESS W H, DYSON F J. Iterated prisoners dilemma contains strategies that dominate any evolutionary opponent[J]. Proc Natl Acad Sci, 2012, 109(26):10409-10413. doi:10.1073/pnas.1206569109. [19] SMITH J M, PRICE G R. The logic of animal conflict[J]. Nature, 1973, 246(5427):15-18. doi:10.1038/246015a0. [20] SMITH J M. Evolution and the theory of games[M]. Cambridge: Cambridge University Press, 1982. [21] STEWART A J, PLOTKIN J B. Extortion and cooperation in the prisoners dilemma[J]. Proc Natl Acad Sci, 2012, 109(26):10134-10135. doi:10.1073/pnas.1208087109. [22] YOUNG H P. The evolution of conventions[J]. Econometrica, 1993, 61(1):57. doi:10.2307/2951778. |
[1] | 丁文旭,李莹,王栋,赵建立. 求解四元数矩阵方程的矩阵半张量积方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 103-110. |
[2] | 邢海云,赵建立. 变异机制在网络演化博弈中的应用[J]. 山东大学学报(理学版), 2016, 51(12): 103-107. |
[3] | 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118. |
[4] | 程代展,赵寅,徐相如. 混合值逻辑及其应用[J]. 山东大学学报(理学版), 2011, 46(10): 32-44. |
|