您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 11-22.doi: 10.6040/j.issn.1671-9352.9.2021.001

• • 上一篇    下一篇

基于图形的网络演化博弈的拓扑结构

程代展   

  1. 中国科学院数学与系统科学研究院, 系统控制重点实验室, 北京 100190
  • 出版日期:2021-10-20 发布日期:2021-09-28
  • 作者简介:CHENG Dai-zhan(1946— ), Male, Professor, Research Interests: nonlinear control system theory. E-mail:dcheng@iss.ac.cn

Topological structure of graphbased networked evolutionary games

CHENG Dai-zhan   

  1. Institute of Systems Science, Chinese Academy of Sciences, Beijing 100190, China
  • Online:2021-10-20 Published:2021-09-28

摘要: 对基于图形的网络演化博弈,首先求出典型结点策略演化方程,进而给出将结点方程组合成网络局势演化方程的方法。利用局势演化方程,将计算逻辑动态系统不动点与极限环的公式推广用于图形的网络演化博弈。然后,介绍某玩家单独更新的局势演化方程,并依此给出网络演化博弈纯纳什均衡点计算公式。

关键词: 网络演化博弈, 局势演化方程, 单独更新的局势(演化)方程, 纯纳什均衡, 矩阵半张量积

Abstract: For a graph-based networked evolutionary game, the strategy evolutional equations for typical nodes are first calculated. A method is proposed to assemble typical node equations together to form the profile evolutional equation. The formula for calculating fixed points and limit cycles of logical networks is applicable to reveal the topological structure of networked evolutionary games, including the fixed points and limit cycles of networked evolutionary games. Next, for each player the unilateral profile updating equation is introduced. Using them, a formula for calculating pure Nash equilibrium(s)is obtained. Some numerical examples are presented.

Key words: networked evolutionary game, profile dynamic equation, unilateral profile updating equation, pure Nash equilibrium, semi-tensor product of matrices

中图分类号: 

  • B815.2
[1] BRAMOULLE Y, KRANTON R. Games played on networks[M] //BRAMOULLE Y, GALEOTTI A, ROGERS B, et al. The Oxford Handbook of the Economics of Networks, Chapter 5. Oxford: Oxford University Press, 2016: 83-112.
[2] CAO Z G, QIN C Z, YANG X G, et al. Dynamic matching pennies on networks[J]. International Journal of Game Theory, 2019, 48(3):887-920. doi:10.1007/s00182-019-00665-5.
[3] CHENG D Z, QI H S. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2251-2258. doi:10.1109/TAC.2010.2043294.
[4] CHENG D Z, QI H S, LI Z. Analysis and control of Boolean networks: a semi-tensor product Approach[M]. London: Springer, 2011.
[5] CHENG D Z, QI H S, ZHAO Y. An introduction to semi-tensor product of matrices and its applications[M]. Singapore: World Scientific, 2012. DOI:10.1142/8323.
[6] CHENG D Z. On finite potential games[J]. Automatica, 2014, 50(7):1793-1801. doi:10.1016/j.automatica.2014.05.005.
[7] CHENG D Z, HE F H, QI H S, et al. Modeling, analysis and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415. doi:10.1109/TAC.2015.2404471.
[8] CHENG D Z, LIU T, ZHANG K Z, et al. On decomposed subspaces of finite games[J]. IEEE Transactions on Automatic Control, 2016, 61(11):3651-3656. doi:10.1109/TAC.2016.2525936.
[9] CHENG D Z, WU Y H, ZHAO G D, et al. A comprehensive survey on STP approach to finite games[EB/OL]. [2021-06-30]. J Sys Sci Compl(to appear), http://arxiv.org/abs/2106.16086.
[10] CHIAPPORI P A, LEVITT S, GROSECLOSE T. Testing mixed-strategy equilibria when players are heterogeneous: the case of penalty kicks in soccer[J]. American Economic Review, 2002, 92(4):1138-1151. doi:10.1257/00028280260344678.
[11] EASLEY D, KLEINBERG J. Networks, crowds, and markets: reasoning about a highly connected world [M]. Cambridge: Cambridge University Press, 2010. DOI:10.1017/cbo9780511761942.
[12] GUO P L, WANG Y Z, LI H T. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method[J]. Automatica, 2013, 49(11):3384-3389. doi:10.1016/j.automatica.2013.08.008.
[13] HAO Y Q, CHENG D Z. On skew-symmetric games[J]. Journal of the Franklin Institute, 2018, 355(6):3196-3220. doi:10.1016/j.jfranklin.2018.02.015.
[14] HILBE C, NOWAK M A, SIGMUND K. Evolution of extortion in iterated prisoners dilemma games[J]. Proc Natl Acad Sci, 2013, 110(17):6913-6918. doi:10.1073/pnas.1214834110.
[15] HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 1986.
[16] JACKSON MO, ZENOU Y. Games on networks[M] //PEYTON Y, ZAMIR S. Handbook of game Theory: Chapter 3, Vol 4. Amsterdam: Elsevier Science, 2014: 95-164.
[17] LI Z Q, CHENG D Z. Algebraic approach to dynamics of multivalued networks[J]. International Journal of Bifurcation and Chaos, 2010, 20(3):561-582. doi:10.1142/s0218127410025892.
[18] PRESS W H, DYSON F J. Iterated prisoners dilemma contains strategies that dominate any evolutionary opponent[J]. Proc Natl Acad Sci, 2012, 109(26):10409-10413. doi:10.1073/pnas.1206569109.
[19] SMITH J M, PRICE G R. The logic of animal conflict[J]. Nature, 1973, 246(5427):15-18. doi:10.1038/246015a0.
[20] SMITH J M. Evolution and the theory of games[M]. Cambridge: Cambridge University Press, 1982.
[21] STEWART A J, PLOTKIN J B. Extortion and cooperation in the prisoners dilemma[J]. Proc Natl Acad Sci, 2012, 109(26):10134-10135. doi:10.1073/pnas.1208087109.
[22] YOUNG H P. The evolution of conventions[J]. Econometrica, 1993, 61(1):57. doi:10.2307/2951778.
[1] 丁文旭,李莹,王栋,赵建立. 求解四元数矩阵方程的矩阵半张量积方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 103-110.
[2] 邢海云,赵建立. 变异机制在网络演化博弈中的应用[J]. 山东大学学报(理学版), 2016, 51(12): 103-107.
[3] 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118.
[4] 程代展,赵寅,徐相如. 混合值逻辑及其应用[J]. 山东大学学报(理学版), 2011, 46(10): 32-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .