《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 46-51.doi: 10.6040/j.issn.1671-9352.0.2020.256
赵跳,章超*
ZHAO Tiao, ZHANG Chao*
摘要: 证明了任意自内射的Nakayama代数A的q-Cartan矩阵CA(q)相似于一个对角矩阵,而且CA(q)的行列式为|CA(q)|={(1-(qn)m)/(1-qn),〓〓〓如果(n,m)=1;((1-q[m,n])(m,n))/(1-qn),如果(n,m)≠1,其中n为单模的个数,m为齐次关系理想I中最短路径的长度,(n,m)表示n与m的最大公因数,[n,m]表示n与m的最小公倍数。
中图分类号:
[1] EILENBERG S. Algebras of cohomologically finite dimension[J]. Commentarii Mathematici Helvetici, 1954, 28(1):310-319. [2] JANS J P, NAKAYAMA T. On the dimension of modules and Algebras, VII. Algebras with finite-dimensional residue-algebras[J]. Nagoya Mathematical Journal, 1957, 11:67-76. [3] ZACHARIA D. On the Cartan matrix of an Artin algebra of global dimension two[J]. Journal of Algebra, 1983, 82(2):353-357. [4] BURGESS W D, FULLEER K R, VOSS E R, et al. The Cartan matrix as an indicator of finite global dimension for Artinian rings[J]. Proceedings of the American Mathematical Society, 1985, 95(2):157-165. [5] HOLM T. Cartan determinants for gentle algebras[J]. Archiv der Mathematik, 2005, 85(3):233-239. [6] BESSENRODT C, HOLM T. q-Cartan matrices and combinatorial invariants of derived categories for skewed-gentle algebras[J]. Pacific Journal of Mathematics, 2007, 229(1):25-47. [7] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras: Vol.1: techniques of representation theory[M]. Cambridge: Cambridge University Press, 2006. [8] GUSTAFSON W H. Global dimension in serial rings[J]. Journal of Algebra, 1985, 97(1):14-16. [9] MADSEN D. Projective dimensions and Nakayama algebras[J]. Representations of Algebras and Related Topics, 2005: 247-265. [10] RINGEL C M. The Gorenstein projective modules for the Nakayama algebras. I[J]. Journal of Algebra, 2013, 385:241-261. [11] CHEN Xiao-wu, YE Yu. Retractions and Gorenstein homological properties[J]. Algebras and Representation Theory, 2014, 17(3):713-733. [12] SHEN Dawei. The singularity category of a Nakayama algebra[J]. Journal of Algebra, 2015, 429:1-18. [13] 谢宗真, 张孝金, 昝立博. 自内射的Nakayama代数的嘉当矩阵[J]. 南京大学学报(数学半年刊), 2017, 34(2):155-169. XIE Zongzhen, ZHANG Xiaojin, ZAN Libo. The Cartan matrice of self-injective Nakayama algebras[J]. Journal of Nanjing University(Mathematical Biquarterly), 2017, 34(2):155-169. |
[1] | 刘静姝,王莉,刘惊雷. 基于循环矩阵投影的Nyström扩展[J]. 《山东大学学报(理学版)》, 2020, 55(7): 55-66. |
[2] | 李静,何承源. 求解首尾差循环矩阵逆与广义逆的快速算法[J]. J4, 2013, 48(6): 96-99. |
|