您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (9): 105-113, 126.doi: 10.6040/j.issn.1671-9352.4.2022.5119

•   • 上一篇    下一篇

多示例学习的可行域定位及快速因果实例选择

杨梅1,2,3,*(),柯文静1,王丹东1   

  1. 1. 西南石油大学计算机科学学院, 四川 成都 610500
    2. 西南石油大学人工智能研究院, 四川 成都 610500
    3. 西南石油大学机器学习研究中心, 四川 成都 610500
  • 收稿日期:2022-08-02 出版日期:2023-09-20 发布日期:2023-09-08
  • 通讯作者: 杨梅 E-mail:yangmei@swpu.edu.cn
  • 作者简介:杨梅(1982—), 女, 副教授, 研究方向为多示例学习、深度学习等.E-mail: yangmei@swpu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62006200);四川省自然科学基金资助项目(2019YJ0314);浙江省海洋大数据挖掘与应用重点实验室开放课题(OBDMA202102);南充市校合作项目(SXHZ051)

Feasible region localization and fast causal instance selection for multi-instance learning

Mei YANG1,2,3,*(),Wenjing KE1,Dandong WANG1   

  1. 1. School of Computer Science, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    2. Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    3. Lab of Machin Learning, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • Received:2022-08-02 Online:2023-09-20 Published:2023-09-08
  • Contact: Mei YANG E-mail:yangmei@swpu.edu.cn

摘要:

提出了一种多示例学习的可行域定位及快速因果实例选择(feasible region localization and fast causal instance selection for multi-instance learning, FFCM)算法, 包含3个技术。可行域定位技术基于距离度量, 从正包中选出具有代表性的实例作为候选实例; 然后利用概率分析筛选负裁判包, 以最大限度缩减选择因果实例的可行域范围。快速因果实例选择技术利用候选实例与负裁判包的因果关系构建融合包, 设计因果性评判指标, 使用先验知识从候选实例中选择出因果实例。包映射技术基于因果实例和差值映射函数, 将包映射为有较高可区分性的单向量。本算法在27个常用数据集上进行了实验, 并与6个前沿的MIL算法进行了对比, 实验结果展示了FFCM的良好分类性能。

关键词: 因果实例, 可行域, 映射, 多示例学习, 概率分析

Abstract:

This paper proposes a feasible region localization and fast causal instance selection(FFCM)algorithm for multi-instance learning, incorporating three techniques. To minimize the feasible region of data, the fast feasible region localization technique is used to select representative instances from the positive bags as candidate instances based on distance measurement, and reduces the negative referee bags through probability analysis. The fast causal instance-based selection technique uses the causal relationship between candidate instances and negative referee bags to construct fusion bags. Subsequently, prior knowledge is employed to select causal instances from candidate instances based on the designed causal instance criteria. The bag mapping technique maps bags into single vectors with high distinguishability using causal instances and a difference-based mapping function. The proposed algorithm is compared with 6 state-of-the-art MIL algorithms on 27 commonly used datasets. The experimental results show that the proposed FFCM exhibits comparable classification performance.

Key words: causal instance, feasible region, mapping, multi-instance learning, probability analysis

中图分类号: 

  • TP181

表1

符号"

符号 含义 符号 含义
$\mathscr{C}=\bf{R}^{d}$ 实例空间 $\mathit{{A}}$ 先验分类器
$\mathscr{Y}=\{+1,-1\}$ 标签空间 $\mathit{{A}}(\cdot)$ - 为正的概率
$\mathscr{B}=\left\{\left(\boldsymbol{B}_{i},y_{i}\right)\right\}_{i=1}^{n}$ 数据集 $\boldsymbol{B}_{i}^{x}=\{\boldsymbol{x}\} \cup \boldsymbol{B}_{i}^{-}$ 融合包
$\boldsymbol{B}_{i}$ C 候选实例集
$y_{i} \in \mathscr{Y}$ 包的标签 $\mathscr{B}^{r}$ 负裁判包集
$m_{i}$ 包中实例数 $\mathit{\boldsymbol{s}}_{i j}$ 因果性评判指标
$\mathit{\boldsymbol{x}}_{i j}$ 包中实例 R 因果实例集
$\mathscr{B}^{+}\left(\mathscr{B}^{-}\right)$ 正(负)包集合 $c$ 因果实例的个数
$N^{+}\left(N^{-}\right)$ 正(负) 包的个数 $\mathscr{V}$ 映射向量集

图1

因果实例选择流程图"

表2

数据集属性"

数据集 子数据集个数 维度 包数 正包数 负包数 实例数 包内最大实例数 包内最小实例数 包内平均实例数
Musk1 1 166 92 47 45 476 40 2 5.17
Musk2 1 166 102 39 63 6 598 1 044 1 64.69
Elephant 1 230 200 100 100 1 391 13 2 6.96
Fox 1 230 200 100 100 1 320 13 2 6.60
Tiger 1 230 200 100 100 1 220 13 1 6.10
Mutagenesis1 1 7 188 125 63 10 486 88 28 55.78
Mutagenesis2 1 7 42 13 29 2 132 86 26 50.76
Messidor 1 687 1 200 654 546 12 352 12 8 10.29
Newsgroups 10 200 100 47~50 50~53 1 982~5 443 54~84 8~29 19.8~54.4
Web 9 5 863~6 519 113 21~88 25~92 3 423 200 4 30.29

图2

FFCM在不同c下的准确率"

图3

FFCM在不同c下10次10cv的时间开销"

表3

FFCM在不同pr下的准确率"

数据集 n×d pr=0.05 pr=0.10 pr=0.15 pr=0.20
Musk1 476×166 79.11±4.27 79.11±2.47 80.11±3.20 78.89±3.51
Musk2 6 598×166 78.20±4.09 77.00±2.68 75.60±3.38 78.10±2.80
Mutagenesis1 2 132×7 81.33±2.07 82.78±3.03 81.56±1.94 82.44±2.32
Elephant 1 391×230 84.15±2.01 84.05±1.56 84.80±1.55 84.45±1.17
Alt.atheism 5 443×200 87.62±0.80 88.10±1.54 87.20±1.22 88.10±1.45
Web4 3 423×6 059 85.00±1.59 85.73±1.03 84.91±1.77 84.82±1.59

表4

FFCM与其他算法的准确率对比"

数据集 miVLAD miFV MILDM StableMIL PL ELDB FFCM
Musk1 83.11±2.21 91.11±1.41 79.11±2.15 90.67±2.29 80.89±1.78 89.60±1.90 80.33±2.63
Musk2 78.20±2.64 84.80±1.72 79.11±2.33 84.80±3.06 76.40±4.27 85.04±2.25 76.30±3.38
Elephant 84.00±0.84 84.80±0.81 77.10±1.74 66.10±2.60 71.80±4.15 76.00±3.10 85.00±1.24
Fox 61.70±1.66 60.50±1.73 54.80±4.23 58.00±2.21 52.00±2.39 55.90±2.40 61.10±1.87
Tiger 84.70±0.75 78.40±1.02 69.80±1.17 67.50±2.66 69.70±2.56 71.10±2.20 80.50±0.67
Mutagenesis1 81.50±1.96 80.78±1.09 80.00±2.11 83.56±2.47 79.35±1.65 84.67±0.84 80.78±2.51
Mutagenesis2 78.50±2.29 80.50±1.00 81.00±2.55 86.00±3.00 74.00±10.56 59.93±6.40 71.00±5.61
Messidor 67.43±0.39 70.57±0.47 63.92±0.64 62.73±0.91 54.52±0.38 57.40±2.41 63.84±1.25
News.aa 84.70±1.42 82.60±1.74 54.60±4.03 51.80±7.14 80.60±1.50 84.67±1.35 87.60±1.02
News.cg 79.00±1.48 80.40±1.02 52.20±6.37 48.60±2.73 78.40±1.50 77.72±2.98 81.00±1.90
News.co 68.30±1.55 72.00±1.41 48.00±4.15 48.40±5.08 63.60±2.06 65.94±2.81 71.20±1.33
News.csm 78.70±1.73 77.80±1.60 49.20±2.79 53.40±2.87 77.60±0.80 76.13±4.58 79.00±2.14
News.mf 71.90±1.64 73.80±1.94 43.40±2.87 50.40±2.87 63.20±4.53 64.60±3.29 68.00±1.90
News.rsb 82.90±0.94 84.00±1.10 46.20±3.12 51.00±6.10 81.20±0.98 77.80±2.40 81.20±1.17
News.rsh 88.60±0.92 88.60±1.85 51.20±1.83 51.00±3.41 81.20±0.98 81.35±1.42 89.10±1.14
News.se 91.90±0.30 93.00±1.10 55.80±5.60 51.40±3.20 92.00±1.26 88.20±2.10 93.50±0.81
News.sm 81.90±1.70 83.00±1.67 53.80±3.43 49.20±2.71 81.60±1.50 80.40±1.56 82.40±1.43
News.ss 84.70±1.10 86.60±2.33 48.20±2.99 55.40±3.07 76.80±2.32 77.60±2.30 86.70±1.49
Web1 82.00±0.89 84.55±0.57 82.91±0.89 82.00±1.34 81.82±3.25 81.27±1.38 81.45±0.73
Web2 81.00±2.35 82.36±0.45 83.45±0.68 81.64±0.89 78.91±1.67 72.18±1.65 80.73±0.68
Web3 82.00±1.56 82.73±1.72 82.73±1.29 81.82±1.15 80.73±0.68 80.72±2.91 81.27±0.60
Web4 84.45±1.43 80.73±1.34 79.09±1.00 74.00±2.48 77.45±0.36 77.27±3.02 84.82±1.99
Web5 83.00±1.35 77.45±0.68 80.00±1.72 87.05±0.79 77.27±0.81 74.18±1.29 83.27±1.59
Web6 84.36±2.14 80.36±1.69 82.73±1.15 77.64±0.93 77.82±0.73 81.82±2.64 86.36±0.91
Web7 74.00±2.67 67.82±2.34 61.09±3.65 62.00±2.10 52.73±1.29 51.73±4.52 71.82±2.87
Web8 73.27±2.04 69.82±1.76 56.91±1.59 59.27±0.68 54.18±6.18 51.27±4.39 76.00±3.38
Web9 76.55±2.87 75.82±2.20 56.73±2.55 54.00±4.69 53.27±6.02 48.07±2.60 75.55±2.17
Mean Rank 2.63 2.48 4.85 4.93 5.37 5.00 2.74

图4

用Bonferroni-Dunn test将FFCM与6种对比算法进行比较得到的CD图"

1 XU Bicun, TING Kaiming, ZHOU Zhihua. Isolation set-kernel and its application to multi-instance learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 941-949.
2 杨梅, 曾雯喜, 方宇, 等. 多示例学习的两阶段实例选择和自适应包映射算法[J]. 南京大学学报(自然科学版), 2022, 58 (1): 94- 102.
doi: 10.13232/j.cnki.jnju.2022.01.010
YANG Mei , ZENG Wenxi , FANG Yu , et al. Two stage instance selection and adaptive bag mapping algorithm for multi-instance learning[J]. Journal of Nanjing University (Natural Science), 2022, 58 (1): 94- 102.
doi: 10.13232/j.cnki.jnju.2022.01.010
3 王刚, 许信顺. 一种新的基于多示例学习的场景分类方法[J]. 山东大学学报(理学版), 2010, 45 (7): 108- 113.
WANG Gang , XU Xinshun . A new multi-instance learning method for scene classification[J]. Journal of Shandong University(Natural Science), 2010, 45 (7): 108- 113.
4 YANG Mei , ZHANG Yuxuan , WANG Xizhao , et al. Multi-instance ensemble learning with discriminative bags[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2021, 52 (9): 5456- 5467.
5 ANGELIDIS S , LAPATA M . Multiple instance learning networks for fine-grained sentiment analysis[J]. Transactions of the Association for Computational Linguistics, 2018, 6, 17- 31.
doi: 10.1162/tacl_a_00002
6 TARRAGÓ D S , CORNELIS C , BELLO R , et al. A multi-instance learning wrapper based on the Rocchio classifier for web index recommendation[J]. Knowledge-Based Systems, 2014, 59, 173- 181.
doi: 10.1016/j.knosys.2014.01.008
7 ZHANG Weijia, LI Jiuyong, LIU Lin. Robust multi-instance learning with stable instances[J/OL]. arXiv, 2019. https://arxiv.org/abs/1902.05066v3.
8 ZHANG Minling , ZHOU Zhihua . Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, 2009, 31 (1): 47- 68.
doi: 10.1007/s10489-007-0111-x
9 WEI Xiushen , WU Jianxin , ZHOU Zhihua . Scalable algorithms for multi-instance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (4): 975- 987.
doi: 10.1109/TNNLS.2016.2519102
10 CHI Ziqiu , WANG Zhe , DU Wenli . Explicit metric-based multiconcept multi-instance learning with triplet and superbag[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33 (10): 5888- 5897.
11 HUANG Shengjun , GAO Wei , ZHOU Zhihua . Fast multi-instance multi-label learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (11): 2614- 2627.
12 GÄRTNER T, FLACH P A, KOWALCZYK A. multi-instance kernels[C]//Proceedings of the 19th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2002: 179-186.
13 AMORES J . Multiple instance classification: review, taxonomy and comparative study[J]. Artificial Intelligence, 2013, 201, 81- 105.
doi: 10.1016/j.artint.2013.06.003
14 ZHOU Zhihua, SUN Yunyin, LI Yufeng. Multi-instance learning by treating instances as non-I.I.D. simples[C]// Proceedings of the 26th International Conference on Machine Learning. Montreal: ACM, 2009.
15 WANG J, ZUCKER J D. Solving the multiple-instance problem: a lazy learning approach[C]//Proceedings of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000: 1119-1125.
16 WU Jia , PAN Shirui , ZHU Xingquan , et al. Multi-instance learning with discriminative bag mapping[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (6): 1065- 1080.
doi: 10.1109/TKDE.2017.2788430
17 SVRKAYA E , YÜKSEKGÖNÜL M , BAYDOǦAN M G . Learning prototypes for multiple instance learning[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2021, 29 (7): 2901- 2919.
18 HE Jianjun , GU Hong , WANG Zhelong . Bayesian multi-instance multi-label learning using Gaussian process prior[J]. Machine Learning, 2012, 88 (1): 273- 295.
19 DECENCIōRE E , ZHANG X , CAZUGUEL G , et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis & Stereology, 2014, 33 (3): 231- 234.
20 SRINIVASAN A, MUGGLETON S, KING R D. Comparing the use of background knowledge by inductive logic programming systems[C]//Proceeding of the 5th International Workshop on Inductive Logic Programming. Leuven: Springer-Verlag, 1995.
21 KANDEMIR M , HAMPRECHT F A . Computer-aided diagnosis from weak supervision: a benchmarking study[J]. Computerized Medical Imaging and Graphics, 2015, 42, 44- 50.
doi: 10.1016/j.compmedimag.2014.11.010
22 LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
23 REUTEMANN P, PFAHRINGER B, FRANK E. A toolbox for learning from relational data with propositional and multi-instance learners[C]//Australasian Joint Conference on Artificial Intelligence. Berlin: Springer, 2004: 1017-1023.
24 ZHOU Zhihua , JIANG Kai , LI Ming . Multi-instance learning based web mining[J]. Applied Intelligence, 2005, 22 (2): 135- 140.
doi: 10.1007/s10489-005-5602-z
25 DEMŠAR J . Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7, 1- 30.
[1] 曹喜燕,林福财,金铭,李进金. 程序性知识评估: 从问题空间到可辨识知识结构[J]. 《山东大学学报(理学版)》, 2023, 58(7): 97-105, 114.
[2] 陈晶晶,杨延涛. 解变分不等式与不动点问题的一种修正的惯性投影算法[J]. 《山东大学学报(理学版)》, 2023, 58(3): 64-76.
[3] 席艳丽,陈鹏玉. 隐式分数阶模糊微分方程初值问题解的唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(4): 85-90.
[4] 张芳娟. 因子上保持混合三重η-积的非线性映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 92-96.
[5] 费秀海,张海芳. 广义矩阵代数上一类非全局非线性三重高阶可导映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 97-105.
[6] 唐善刚. 置换群作用于一类映射集的等价类的计数[J]. 《山东大学学报(理学版)》, 2021, 56(8): 67-75.
[7] 张芳娟. 因子von Neumann代数上ξ-斜Jordan可导映射的一个刻画[J]. 《山东大学学报(理学版)》, 2020, 55(7): 32-37.
[8] 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25-31.
[9] 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44-51.
[10] 张芳娟. *-代数上强保持新积的映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 46-49.
[11] 冯丹丹,吴洪博. 拓扑系统中开远域及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(11): 90-96.
[12] 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84.
[13] 费秀海,戴磊. 广义矩阵代数上双可导映射的可加性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 85-90.
[14] 杨丹丹. 带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理[J]. 山东大学学报(理学版), 2018, 53(2): 46-51.
[15] 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[3] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[4] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[5] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[6] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[7] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[8] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[9] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[10] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .