《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 85-90.doi: 10.6040/j.issn.1671-9352.0.2018.635
• • 上一篇
费秀海1,戴磊2*
FEI Xiu-hai1, DAI Lei2,*
摘要: 设G是一个广义矩阵代数, φ:G ×G →G 是G 上的一个映射(没有双可加性假设), 若对任意的X,Y,Z∈G,有φ(XY,Z)=φ(X,Z)Y+Xφ(Y,Z)和φ(X,YZ)=φ(X,Y)Z+Yφ(X,Z),则φ是 G上的一个双导子。
中图分类号:
[1] CHEUNG W S. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63: 117-127. [2] DU Yiqiu, WANG Yu. k-commuting maps on triangular algebras[J]. Linear Algebra Appl, 2012, 436: 1367-1375. [3] BENKOVIC D, EREMITA D. Commuting traces and commutativity preserving maps on triangular algebras[J]. J Algebra, 2004, 280: 797-824. [4] BENKOVIC D. Jordan derivations and anti-derivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397: 235-244. [5] LI Yanbo, BENKOVIC D D. Jordan generalized derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2011, 59: 841-849. [6] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010,432:2615-2622. [7] ZHANG Jianhua, YU Weiyan. Jordan derivations of tringular algebras[J]. Linear Algebra Appl, 2006, 419: 251-255. [8] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435: 1137-1146. [9] BENKOVIC D D. Generalized Lie deriavtions on triangular algebras[J]. Linear Algebra Appl, 2011, 434: 1532-1544. [10] CHEN Lin, ZHANG Jianhua. Nonlinear Lie derivations on upper triangular matrix algebras[J]. Linear and Multilinear Algebra, 2008, 56: 725-730. [11] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432:2953-2960. [12] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6): 1158-1170. [13] CHEUNG W S. Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2003, 51: 299-310. [14] ZHANG Jianhua, FENG Shan, LI Hongxia, et al. Generalized biderivations of nest algebras[J]. Linear Algebra Appl, 2006, 418(1):225-233. [15] ZHAO Yanxia, WANG Dengyin, YAO Ruiping. Biderivations of upper triangular matrix algebras over commutative rings[J]. Int J Math Game Theory Algebra, 2009, 6:473-478. [16] BENKOVIC D. Biderivations of triangular algebras[J]. Linear Algebra Appl, 2009, 431: 1587-1602. |
[1] | 白瑞蒲,吴婴丽,侯帅. 8-维3-李代数的Manin Triple[J]. 《山东大学学报(理学版)》, 2019, 54(6): 30-33. |
[2] | 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1-5. |
[3] | 高瑞梅,高嘉英,初颖. 变形广义Shi构形的单根基[J]. 《山东大学学报(理学版)》, 2019, 54(2): 66-70. |
[4] | 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83. |
[5] | 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84. |
[6] | 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99. |
[7] | 张芳娟. 广义矩阵代数上的非线性Lie中心化子[J]. 山东大学学报(理学版), 2015, 50(12): 10-14. |
[8] | 李俊, 张建华, 陈琳. 三角Banach代数上的对偶模Jordan导子和对偶模广义导子[J]. 山东大学学报(理学版), 2015, 50(10): 76-80. |
[9] | 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46. |
[10] | 冯敏1,辛小龙1*,李毅君1,2. MV-代数上的f导子和g导子[J]. 山东大学学报(理学版), 2014, 49(06): 50-56. |
[11] | 刘丹,张建华*. B(X)上 ξ-Lie 导子的一个刻画[J]. J4, 2013, 48(8): 41-44. |
[12] | 姜景连. 量子环面上的导子李代数模的导子[J]. J4, 2013, 48(6): 46-50. |
[13] | 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9. |
[14] | 彭东霞,张建华. 套代数上广义导子对的刻画[J]. J4, 2013, 48(10): 5-8. |
[15] | 张芳娟. 广义*Lie可导映射[J]. J4, 2012, 47(4): 37-41. |
|