《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 97-105.doi: 10.6040/j.issn.1671-9352.0.2021.247
• • 上一篇
费秀海,张海芳*
FEI Xiu-hai, ZHANG Hai-fang*
摘要: 设G是一个满足MN=0=NM的2-无挠的广义矩阵代数,Q={A∈G:A2=0},D={dn}n∈N是G上一列映射(没有可加性假设)。文章证明:若对任意n∈N,A,B,C∈G且ABC∈Q,有dn(ABC)=∑r+s+t=ndr(A)ds(B)dt(C),则D是一个可加的高阶导子。作为应用,在三角代数上得到了相同的结论。
中图分类号:
[1] HERSTEIN I N. Jordan derivations of prime rings[J]. Proc Amer Math Soc, 1957, 8(6):1104-1110. [2] BREVSAR M, VUKMAN J. Jordan derivations on prime rings[J]. Bull Austral Math Soc, 1988, 37(3):321-322. [3] ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebras[J]. Linear Algebra Appl, 2006, 419(1):251-255. [4] LU Fangyan. Jordan derivable maps of prime rings[J].Comm Algebra, 2010, 38(12):4430-4440. [5] ASHRAF M, JABEEN A. Nonlinear Jordan triple derivable mappings of triangular algebras[J]. Pac J Appl Math, 2016, 7(4):229-239. [6] LI Jiankui, PAN Zhidong, SEHN Qihua. Jordan and Jordan higher all-derivable points of some algebras[J]. Linear and Multilinear Algebra, 2013, 61(6):831-845. [7] ZHAO Jingping, ZHU Jun. Jordan higher all-derivable points in triangular algebras[J]. Linear Algebra Appl, 2012, 436(9):3072-3086. [8] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010, 432(10):2615-2622. [9] LIU Dan, ZHANG Jianhua. Jordan higher derivable maps on triangular algebras by commutative zero products[J]. Acta Math Sinica(English Series), 2016, 32(2):258-264. [10] HUANG Wenbo, LI Jiankui, HE Jun. Characterizations of Jordan mappings on some rings and algebras through zero products [J]. Linear and Multilinear Algebra, 2017, 60(2):167-180. [11] ASHRAF M, JABEEN A. Nonlinear Jordan triple higher derivable mappings of triangular algebras[J]. Southeast Asian Bull Math, 2018, 42(4):503-520. [12] FU Wenlian, XIAO Zhankui, DU Xiankun. Nonlinear Jordan higher derivations on triangular algebras[J]. Communications in Mathematical Research, 2015, 31(2):119-130. [13] WONG Dein, MA Xiaobin, CHEN Li. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra Appl, 2015, 483(5):236-248. [14] WANG Long. Nonlinear mappings on full matrices derivable at zero point[J]. Linear and Multilinear Algebra, 2016, 65(11):725-730. [15] 孟利花,张建华.三角代数上的一类非全局三重可导映射[J].数学学报(中文版), 2017, 60(6):955-960. MENG Lihua, ZHANG Jianhua. A class non-global triple derivable maps on triangular algebras[J]. Acta Math Sinica, 2017, 60(6):955-960. [16] 费秀海,戴磊,朱国位.广义矩阵代数上的一类局部非线性三重可导映射[J].浙江大学学报(理学版), 2020, 47(2):167-171. FEI Xiuhai, DAI Lei, ZHU Guowei. A class local nonlinear triple derivable maps on generalized matrix algebras[J]. Journal of Zhejiang University(Science Edition), 2020, 47(2):167-171. [17] SANDS A D. Radicals and morita contexts[J]. Journal of Algebra, 1973, 24(2):335-345. [18] CHEUNG W S. Mappings on triangular algebras[D]. Victoria, Canada: University of Victoria, 2000. |
[1] | 马帅英,张建华. 三角代数上的一类非全局高阶可导非线性映射[J]. 《山东大学学报(理学版)》, 2021, 56(2): 48-55. |
[2] | 费秀海,戴磊,朱国卫. 三角代数上Lie积为平方零元的非线性Jordan高阶可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 50-58. |
[3] | 费秀海,戴磊. 广义矩阵代数上双可导映射的可加性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 85-90. |
[4] | 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84. |
[5] | 张芳娟. 广义矩阵代数上的非线性Lie中心化子[J]. 山东大学学报(理学版), 2015, 50(12): 10-14. |
[6] | 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9. |
|