《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 48-55.doi: 10.6040/j.issn.1671-9352.0.2020.345
• • 上一篇
马帅英,张建华*
MA Shuai-ying, ZHANG Jian-hua*
摘要: 设T =Tri(A,M,B )是三角代数,{δn}n∈N:T →T 是一列映射(没有可加性的假设,其中δ0是恒等映射)。若对任意的U,V∈T 且U与V中至少有一个是幂等元,有δn(UV)=∑i+j=nδi(U)δj(V),则{δn}n∈N是T上可加的高阶导子。
中图分类号:
[1] QI Xiaofei, HOU Jinchuan. Characterization of Lie derivations on prime rings[J]. Communications in Algebra, 2011, 39(10):3824-3835. [2] NARANJANI L, HASSANI M, MIRZAVAZIRI M. Local higher derivations on C*-algebras are higher derivations[J]. International Journal of Nonlinear Analysis and Applications, 2018, 9(1):111-115. [3] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of Korean Mathematical Society, 2015, 52(2):581-591. [4] 刘丹, 张建华. 三角代数上 Jordan 高阶导子的刻画[J]. 数学学报(中文版), 2016, 59(4):461-468. LIU Dan, ZHANG Jianhua. Characterization of Jordan higher derivations on triangular algebras[J]. Acta Mathematica Sinica(Chinese Series), 2016, 59(4):461-468. [5] WONG Dein, MA Xiaobin, CHEN Lin. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra and its Applications, 2015, 483(10):236-248. [6] GHAHRAMANI H, GHOSSEIRI M N, ZADEH L H. On the Lie derivations and generalized Lie derivations of quaternion rings[J]. Communications in Algebra, 2019, 47(3):1215-1221. [7] LIU Wenhui. Nonlinear generalized Lie n-derivations on triangular algebras[J]. Communications in Algebra, 2018, 46(6):2368-2383. [8] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra and its Applications, 2010, 432(11):2953-2960. [9] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6):1158-1170. [10] ALKENANI A N, ASHRAF M, JABEEN A. Nonlinear generalized Jordan(σ,τ)-derivations on triangular algebras[J]. Special Materices, 2018, 6(1):216-228. [11] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra and its Applications, 2010, 432(10):2615-2622. [12] VISHKI H R E, MIRZAVAZIRI M, MOAFIAN F. Jordan higher derivations on trivial extension algebras[J]. Communications of the Korean Mathematical Society, 2016, 31(2):247-259. |
[1] | 郑纪文,程智. (强)J-*-三幂等-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 13-19. |
[2] | 庞永锋,魏银,王权. Drazin序的若干性质[J]. 《山东大学学报(理学版)》, 2020, 55(2): 33-42. |
[3] | 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1-5. |
[4] | 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83. |
[5] | 费秀海,戴磊,朱国卫. 三角代数上Lie积为平方零元的非线性Jordan高阶可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 50-58. |
[6] | 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84. |
[7] | 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1-5. |
[8] | 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47. |
[9] | 林屏峰,曾伟,曾纯一. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的幂等元[J]. J4, 2013, 48(8): 36-40. |
[10] | 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9. |
[11] | 罗永贵,徐波,游泰杰. 半群PHn的每个星理想的秩和幂等元秩[J]. J4, 2013, 48(2): 42-48. |
[12] | 罗永贵. 半群W(n,r)的非群元秩和相关秩[J]. J4, 2013, 48(12): 70-74. |
[13] | 赵平. 半群V(n,r)的幂等元秩[J]. J4, 2012, 47(2): 78-81. |
[14] | 赵平1, 游泰杰2, 徐波2,胡华碧1. 降序且保序有限部分变换半群的幂等元秩[J]. J4, 2011, 46(4): 75-77. |
[15] | 乔占科. 半环的一类子半环的拟正则性[J]. J4, 2009, 44(8): 56-57. |
|