您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 48-55.doi: 10.6040/j.issn.1671-9352.0.2020.345

• • 上一篇    

三角代数上的一类非全局高阶可导非线性映射

马帅英,张建华*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 发布日期:2021-01-21
  • 作者简介:马帅英(1997— ), 女, 硕士研究生, 研究方向为算子代数. E-mail:mashuaiying13@163.com*通信作者简介:张建华(1965— ),男, 博士, 教授, 博士生导师, 研究方向为算子代数. E-mail:jhzhang@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11471199)

A class of non-global higher derivable nonlinear maps on triangular algebras

MA Shuai-ying, ZHANG Jian-hua*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Published:2021-01-21

摘要: 设T =Tri(A,M,B )是三角代数,{δn}n∈N:T →T 是一列映射(没有可加性的假设,其中δ0是恒等映射)。若对任意的U,V∈T 且U与V中至少有一个是幂等元,有δn(UV)=∑i+j=nδi(U)δj(V),则{δn}n∈N是T上可加的高阶导子。

关键词: 三角代数, 幂等元, 高阶导子

Abstract: Let T =Tri(A,M,B )be a triangular algebra, and {δn}n∈N:T →T be a family of maps(without the assumption of additivity and where δ0 is the identity map). If n}n∈N satisfies δn(UV)=∑i+j=nδi(U)δj(V)for any U,V∈T with at least one of them is idempotent, then {δn}n∈N is an additive higher derivation on T.

Key words: triangular algebra, idempotent, higher derivation

中图分类号: 

  • O177.1
[1] QI Xiaofei, HOU Jinchuan. Characterization of Lie derivations on prime rings[J]. Communications in Algebra, 2011, 39(10):3824-3835.
[2] NARANJANI L, HASSANI M, MIRZAVAZIRI M. Local higher derivations on C*-algebras are higher derivations[J]. International Journal of Nonlinear Analysis and Applications, 2018, 9(1):111-115.
[3] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of Korean Mathematical Society, 2015, 52(2):581-591.
[4] 刘丹, 张建华. 三角代数上 Jordan 高阶导子的刻画[J]. 数学学报(中文版), 2016, 59(4):461-468. LIU Dan, ZHANG Jianhua. Characterization of Jordan higher derivations on triangular algebras[J]. Acta Mathematica Sinica(Chinese Series), 2016, 59(4):461-468.
[5] WONG Dein, MA Xiaobin, CHEN Lin. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra and its Applications, 2015, 483(10):236-248.
[6] GHAHRAMANI H, GHOSSEIRI M N, ZADEH L H. On the Lie derivations and generalized Lie derivations of quaternion rings[J]. Communications in Algebra, 2019, 47(3):1215-1221.
[7] LIU Wenhui. Nonlinear generalized Lie n-derivations on triangular algebras[J]. Communications in Algebra, 2018, 46(6):2368-2383.
[8] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra and its Applications, 2010, 432(11):2953-2960.
[9] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6):1158-1170.
[10] ALKENANI A N, ASHRAF M, JABEEN A. Nonlinear generalized Jordan(σ,τ)-derivations on triangular algebras[J]. Special Materices, 2018, 6(1):216-228.
[11] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra and its Applications, 2010, 432(10):2615-2622.
[12] VISHKI H R E, MIRZAVAZIRI M, MOAFIAN F. Jordan higher derivations on trivial extension algebras[J]. Communications of the Korean Mathematical Society, 2016, 31(2):247-259.
[1] 郑纪文,程智. (强)J-*-三幂等-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 13-19.
[2] 庞永锋,魏银,王权. Drazin序的若干性质[J]. 《山东大学学报(理学版)》, 2020, 55(2): 33-42.
[3] 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1-5.
[4] 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83.
[5] 费秀海,戴磊,朱国卫. 三角代数上Lie积为平方零元的非线性Jordan高阶可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 50-58.
[6] 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84.
[7] 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1-5.
[8] 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47.
[9] 林屏峰,曾伟,曾纯一. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的幂等元[J]. J4, 2013, 48(8): 36-40.
[10] 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9.
[11] 罗永贵,徐波,游泰杰. 半群PHn的每个星理想的秩和幂等元秩[J]. J4, 2013, 48(2): 42-48.
[12] 罗永贵. 半群W(n,r)的非群元秩和相关秩[J]. J4, 2013, 48(12): 70-74.
[13] 赵平. 半群V(n,r)的幂等元秩[J]. J4, 2012, 47(2): 78-81.
[14] 赵平1, 游泰杰2, 徐波2,胡华碧1. 降序且保序有限部分变换半群的幂等元秩[J]. J4, 2011, 46(4): 75-77.
[15] 乔占科. 半环的一类子半环的拟正则性[J]. J4, 2009, 44(8): 56-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!