您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (8): 13-19.doi: 10.6040/j.issn.1671-9352.0.2019.436

• • 上一篇    

(强)J-*-三幂等-clean环

郑纪文,程智*   

  1. 安徽师范大学数学与统计学院, 安徽 芜湖 241003
  • 发布日期:2020-07-14
  • 作者简介:郑纪文(1996— ), 男, 硕士研究生, 研究方向为环论. E-mail:940664170@qq.com*通信作者简介:程智(1979— ), 男, 博士, 副教授, 研究方向为环论与代数表示论. E-mail:chengzhimath@126.com
  • 基金资助:
    安徽省高校自然科学重点基金资助项目(KJ2018A0304;KJ2019A0488)

(Strongly)J-*-tripotent-clean rings

ZHENG Ji-wen, CHENG Zhi*   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, Anhui, China
  • Published:2020-07-14

摘要: 引入了(强)J-*-三幂等-clean环的概念,举例说明了强J-*-三幂等-clean环类是强-clean环类的真子类,给出了强J-*-三幂等-clean环的刻画,作为应用,得到了这类环在一些环变换下的传递性质。

关键词: 强*-clean环, (强)J-*-三幂等-clean环, *-三幂等元, Abelian环

Abstract: The concept of(strongly)J-*-tripotent-clean ring is introduced. An example is given to illustrate that strongly J-*-tripotent-clean ring is a proper subclass of strongly clean ring. Some equivalent definitions of strongly J-*-tripotent-clean ring are given. As an application, some corresponding properties for transformations of rings are also given.

Key words: strongly *-clean rings, (strongly)J-*-tripotent-clean rings, *-tripotent, Abelian rings

中图分类号: 

  • O153.3
[1] NICHOLON W K. Lifting idempotents and exchange rings[J]. Transactions of the American Mathematical Society, 1977, 229:269-278.
[2] CHEN Huanyin, HARMANCI A, OZCAN A C. Strongly J-clean rings with involutions[J]. Contemp Math, 2014, 609:33-44.
[3] NICHOLON W K. Strongly clean rings and Fittings lemma[J]. Communications in Algebra, 1999, 27(8):3583-3592.
[4] CHEN Huanyin. On strongly J-clean rings[J]. Communications in Algebra, 2010, 38(10):3790-3804.
[5] VAS L. *-Clean rings; some clean and almost clean Baer *-rings and von Neumann algebras[J]. Journal of Algebra, 2010, 324(12):3388-3400.
[6] LI Chunna, ZHOU Yiqiang. On strongly *-clean rings[J]. Journal of Algebra and Its Applications, 2011, 10(6):1363-1370.
[7] CHEN Huanyin, ABDOLYOUSELFI M S. Strongly 2-nil-clean rings with involutions[J]. Czechoslovak Mathematical Journal, 2019, 69(2):317-330.
[8] CHEN Huanyin, SHEIBANI M. Strongly 2-nil-clean rings[J]. Journal of Algebra and Its Applications, 2017, 16(9):1750178.
[9] DIESL A J. Nil clean rings[J]. Journal of Algebra, 2013, 383:197-211.
[10] DANCHEV P V. Feebly J-clean unital rings[J]. International Journal of Algebra, 2017, 11(6):287-290.
[11] DANCHEV P V. Invo-clean unital rings[J]. Communications of the Korean Mathematical Society, 2017, 32(1):19-27.
[12] KOSAN M T, YILDIRIM T, ZHOU Yiqiang. Rings whose elements are the sum of a tripotent and an element from the Jacobson radical[J]. Canadian Mathematical Bulletin, 2019, 62(4):810-821.
[1] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[2] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[3] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[4] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[5] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[6] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[7] 汪慧星,崔建,陈怡宁. 诣零*-clean环[J]. 山东大学学报(理学版), 2017, 52(12): 16-24.
[8] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[9] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
[10] 孙彦中,杨晓燕. 相对于半对偶模的Gorenstein AC-投射模[J]. 山东大学学报(理学版), 2017, 52(10): 31-35.
[11] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[12] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[13] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
[14] 高汉鹏,殷晓斌. g(x)-J-Clean环[J]. 山东大学学报(理学版), 2017, 52(2): 24-29.
[15] 王尧,周云,任艳丽. 强2-好环[J]. 山东大学学报(理学版), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!