您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 16-24.doi: 10.6040/j.issn.1671-9352.0.2017.153

• • 上一篇    下一篇

诣零*-clean环

汪慧星,崔建*,陈怡宁   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241003
  • 收稿日期:2017-04-12 出版日期:2017-12-20 发布日期:2017-12-22
  • 通讯作者: 崔建(1984— ), 男, 博士, 副教授, 研究方向为环论. E-mail:cui368@ahnu.edu.cn E-mail:749908638@qq.com
  • 作者简介:汪慧星(1991— ), 女, 硕士研究生, 研究方向为环论. E-mail:749908638@qq.com
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(11401009);安徽省自然科学基金青年项目(1408085QA01);安徽省高校省级自然科学研究重点项目(KJ2014A082)

Nil *-clean rings

WANG Hui-xing, CUI Jian*, CHEN Yi-ning   

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China
  • Received:2017-04-12 Online:2017-12-20 Published:2017-12-22

摘要: 介绍了诣零*-clean环和唯一诣零*-clean环的概念, 研究了这些环的基本性质和扩张性质,并讨论了几类*-环的关系。

关键词: 诣零clean环, 唯一诣零*-clean环, *-clean环, 诣零*-clean环

Abstract: The concepts of nil *-clean rings and uniquely nil *-clean rings are introduced. Basic properties and extension properties of such rings are investigated. Moreover, the relations of several classes of *-rings are discussed.

Key words: *-clean ring, nil *-clean ring, uniquely nil *-clean ring, nil clean ring

中图分类号: 

  • O153.3
[1] NICHOLSON W K. Lifting idempotents and exchange rings[J]. Transactions of the American Mathematical Society, 1977, 229:269-278.
[2] NICHOLSON W K, ZHOU Y Q. Clean rings: a survey[M] // Advances in Ring Theory. 2005:181-198.
[3] CAMILLO V P, YU H P. Exchange rings, units and idempotents[J]. Communications in Algebra, 1994, 22(12):4737-4749.
[4] DIESL A J. Nil clean rings[J]. Journal of Algebra, 2013, 383:197-211.
[5] KOSAN T, WANG Z, ZHOU Y. Nil-clean and strongly nil-clean rings[J]. Journal of Pure and Applied Algebra, 2016, 220(2):633-646.
[6] BREAZ S, GALUGAREANU G, DANCHEV P, et al. Nil-clean matrix rings[J]. Linear Algebra and Its Applications, 2013, 439(10):3115-3119.
[7] CHEN H, SHEIBANI M. On strongly nil clean rings[J]. Communications in Algebra, 2017, 45(4):1719-1726.
[8] VAS L. *-clean rings; some clean and almost clean Baer *-rings and von Neumann algebras[J]. Journal of Algebra, 2010, 324(12):3388-3400.
[9] HARMANCI A, CHEN H, OZCAN A C. Strongly nil-*-clean rings[J]. Journal of Algebra Combinatorics Discrete Structures and Applications, 2017, 2:155-164.
[10] UNGOR B, GURGUN O, HALICIOGLU S, et al. Feckly reduced rings[J]. Hacettepe Journal of Mathematics and Statistics, 2015, 44(2):375-384.
[11] CUI Jian, WANG Zhou. A note on strongly *-clean rings[J]. Journal of the Korean Mathematical Society, 2015, 52(4):839-851.
[12] LI Chunna, ZHOU Y. On strongly *-clean rings[J]. Journal of Algebra and Its Applications, 2011, 10(06):1363-1370.
[13] HARTE R E. On quasinilpotents in rings[J]. Panamerican Mathematical Journal, 1991, 1(1):10-16.
[14] CHEN H, HARMANCI A, OZCAN A C. Strongly J-clean rings with involutions[J]. Contemporary Mathematics, 2014(609):33-44.
[1] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[2] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[3] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[4] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[5] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[6] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[7] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
[8] 孙彦中,杨晓燕. 相对于半对偶模的Gorenstein AC-投射模[J]. 山东大学学报(理学版), 2017, 52(10): 31-35.
[9] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[10] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
[11] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[12] 鲁琦,鲍宏伟. ZWGP-内射性与环的非奇异性[J]. 山东大学学报(理学版), 2017, 52(2): 19-23.
[13] 高汉鹏,殷晓斌. g(x)-J-Clean环[J]. 山东大学学报(理学版), 2017, 52(2): 24-29.
[14] 王尧,周云,任艳丽. 强2-好环[J]. 山东大学学报(理学版), 2017, 52(2): 14-18.
[15] 张子珩,储茂权,殷晓斌. GWCN环的若干性质[J]. 山东大学学报(理学版), 2016, 51(12): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!