《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 41-47.doi: 10.6040/j.issn.1671-9352.0.2020.347
• • 上一篇
庞永锋,张丹莉,马栋
PANG Yong-feng, ZHANG Dan-li, MA Dong
摘要: 设M和N是2个维数大于1的因子von Neumann代数,任意一个保持混合Jordan三重η-(η≠-1)积的双射Φ:M→N有A→εΦ(A)的形式,其中ε∈{-1,1}。当η∈R时,εΦ是一个线性*-同构或者共轭线性*-同构;当η∈C\R时,εΦ是一个线性*-同构。
中图分类号:
[1] CUI Jianlian, LI Chikwong. Maps preserving product XY-YX* on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2009, 431(5):833-842. [2] QI Xiaofei, HOU Jinchuan. Additive Lie(ξ-Lie)derivations and generalized Lie(ξ-Lie)derivations on prime algebras[J]. Acta Mathematica Sinica(English Series), 2013, 29(2):383-392. [3] WANG Meili, JI Guoxing. Maps preserving *-Lie product on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(11):2159-2168. [4] LI Changjing, LU Fangyan, WANG Ting. Nonlinear maps persevering the Jordan triple *-product on von Neumann algebras[J]. Annals of functional Analysis, 2016, 7(3):496-507. [5] LI Changjing, CHEN Quanyuan, WANG Ting. Nonlinear maps persevering the Jordan triple *-production on factor von Neumann algebras[J]. Chinese Annals of Mathematics(Series B), 2018, 39(4):633-642. [6] LI Changjing, LU Fangyan, FANG Xiaochun. Nonlinear mappings preserving product XY+YX* on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2013, 438(5):2339-2345. [7] DAI Liqing, LU Fangyan. Nonlinear maps preserving Jordan *-products[J]. Journal of Mathematical Analysis and Applications, 2014, 409(1):180-188. [8] HUO Donghua, ZHENG Baodong, LIU Hongyu. Nonlinear maps preserving Jordan triple η-*-products[J]. Journal of Mathematical Analysis and Applications, 2015, 430(1):830-844. [9] LI Changjing, LU Fangyan. Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras[J]. Complex Analysis Operator Theory, 2017, 11(1):109-117. [10] 周游,张建华. 因子冯诺依曼代数上保持混合Lie三重ξ-积的非线性映射[J]. 山东大学学报(理学版), 2019, 54(6):106-111. ZHOU You, ZHANG Jianhua. Nonlinear maps preserving mixed Lie triple ξ-product on factor von Neumann algebras[J]. Journal of Shandong University(Natural Science), 2019, 54(6):106-111. |
[1] | 董慎娟, 李正兴. 临界群的p-中心自同构和应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 68-72. |
[2] | 吴洪毅,海进科. 广义二面体群的Coleman自同构群[J]. 《山东大学学报(理学版)》, 2020, 55(12): 37-39. |
[3] | 徐涛. 关于polynomial自同构的一个注记[J]. 《山东大学学报(理学版)》, 2020, 55(10): 52-54. |
[4] | 赵乐乐,海进科. 具有某种扩张的有限群的Coleman自同构[J]. 《山东大学学报(理学版)》, 2019, 54(10): 109-112. |
[5] | 赵文英,海进科. 关于有限内幂零群和Frobenius群的Coleman自同构[J]. 山东大学学报(理学版), 2017, 52(10): 4-6. |
[6] | 海进科,王伟,何威萍. 关于有限群Coleman自同构的一个注记[J]. 山东大学学报(理学版), 2016, 51(4): 35-38. |
[7] | 杨小飞. 模糊化拓扑空间的刻画[J]. 山东大学学报(理学版), 2016, 51(2): 114-118. |
[8] | 陈松良. 具有非交换Sylow子群的p2q3阶群的构造[J]. 山东大学学报(理学版), 2015, 50(12): 93-97. |
[9] | 高瑞梅, 孙艳. 二次Gröbner基及Orlik-Solomon代数同构[J]. 山东大学学报(理学版), 2015, 50(06): 89-94. |
[10] | 陆汉川, 李生刚. 刻画可双完备化的区间值模糊拟度量空间[J]. 山东大学学报(理学版), 2014, 49(10): 72-77. |
[11] | 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49. |
[12] | 王东燕,李生刚*,杨文华. 模糊图的乘积运算及相关分解[J]. J4, 2013, 48(6): 104-110. |
[13] | 海进科,李正兴. Sylow p-子群的结构对有限群的Coleman外自同构群的影响[J]. J4, 2013, 48(6): 5-8. |
[14] | 陈松良,李惊雷,欧阳建新. 论p3q阶群的构造[J]. J4, 2013, 48(2): 27-31. |
[15] | 赵杰玲, 张建华. 标准算子代数上Jordan同构的刻画[J]. J4, 2013, 48(10): 1-4. |
|