山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 35-38.doi: 10.6040/j.issn.1671-9352.0.2015.587
海进科,王伟,何威萍
HAI Jin-ke, WANG Wei, HE Wei-ping
摘要: 设G为有限群,KG且K为非交换单群,若G/K为交换群或非交换单群, 则G的每个Coleman自同构为内自同构,即OutCol(G)=1。特别地,这样的有限群G具有正规化子性质。
中图分类号:
[1] DADE E C. Sylow-centralizing sections of outer automorphism groups of finite groups are nilpotent[J]. Math Z, 1975, 141:57-76. [2] HERTWECK M, KIMMERLE W. Coleman automorphisms of finite groups[J]. Math Z, 2002, 242:203-215. [3] GROSS F. Automorphisms which centralizes a Sylow p-subgroup[J]. J Algebra, 1982, 77(1):202-233. [4] 海进科,李正兴. 有限 ATI-群的类保持Coleman自同构[J]. 数学学报, 2010, 53(5):891-896. HAI Jinke, LI Zhengxing. Class-preserving Coleman automorphisms of finite ATI-groups[J]. Acta Mathematica Sinica, 2010, 53(5):891-896. [5] 海进科, 王玉雷. 具有一个 T.I. Sylow 2-子群的有限群的类保持Coleman自同构[J]. 数学学报, 2008, 51(6):1115-1118. HAI Jinke, WANG Yulei. Class-preserving Coleman automorphisms of finite groups with a T.I. Sylow 2-subgroup[J]. Acta Mathematica Sinica, 2008, 51(6):1115-1118. [6] HERTWECK M. Class-preserving Coleman automorphisms of finite groups[J]. Monatash Math, 2002, 136:1-7. [7] SEHGAL S K. Units in integral group rings[M]. Harlow: Longman Scientific and Technical Press, 1993. [8] HERTWECK M. A counterexample to the isomorphism problem for integral group rings[J]. Ann Math, 2001, 154:115-138. [9] HERTWECK M. Class-preserving automorphisms of finite groups[J]. J Algebra, 2001, 241:1-26. [10] ROSE J S. A course on group theory[M]. Cambridge: Cambridge University Press, 1978. |
[1] | 赵文英,海进科. 关于有限内幂零群和Frobenius群的Coleman自同构[J]. 山东大学学报(理学版), 2017, 52(10): 4-6. |
[2] | 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49. |
|