您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 35-38.doi: 10.6040/j.issn.1671-9352.0.2015.587

• • 上一篇    下一篇

关于有限群Coleman自同构的一个注记

海进科,王伟,何威萍   

  1. 青岛大学数学科学学院, 山东 青岛 266071
  • 收稿日期:2014-12-25 出版日期:2016-04-20 发布日期:2016-04-08
  • 作者简介:海进科(1964— ),博士,教授,研究方向为有限群及其表示. E-mail:haijinke2002@aliyun.com
  • 基金资助:
    国家自然科学基金资助项目(11171169)

A note on Coleman automorphisms of finite groups

HAI Jin-ke, WANG Wei, HE Wei-ping   

  1. College of Mathematics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2014-12-25 Online:2016-04-20 Published:2016-04-08

摘要: 设G为有限群,KG且K为非交换单群,若G/K为交换群或非交换单群, 则G的每个Coleman自同构为内自同构,即OutCol(G)=1。特别地,这样的有限群G具有正规化子性质。

关键词: 非交换单群, 正规化子问题, Coleman自同构

Abstract: Let K be a normal subgroup of a finite group G and K be a non-abelian simple group. If G/K is a abelian group or a non-abelian simple group. It is shown that every Coleman automorphism of G is an inner automorphism, that is, OutCol(G)=1. In particular, the normalizer property holds for G.

Key words: non-abelian simple groups, the normalizer problem, Coleman automorphisms

中图分类号: 

  • O152.6
[1] DADE E C. Sylow-centralizing sections of outer automorphism groups of finite groups are nilpotent[J]. Math Z, 1975, 141:57-76.
[2] HERTWECK M, KIMMERLE W. Coleman automorphisms of finite groups[J]. Math Z, 2002, 242:203-215.
[3] GROSS F. Automorphisms which centralizes a Sylow p-subgroup[J]. J Algebra, 1982, 77(1):202-233.
[4] 海进科,李正兴. 有限 ATI-群的类保持Coleman自同构[J]. 数学学报, 2010, 53(5):891-896. HAI Jinke, LI Zhengxing. Class-preserving Coleman automorphisms of finite ATI-groups[J]. Acta Mathematica Sinica, 2010, 53(5):891-896.
[5] 海进科, 王玉雷. 具有一个 T.I. Sylow 2-子群的有限群的类保持Coleman自同构[J]. 数学学报, 2008, 51(6):1115-1118. HAI Jinke, WANG Yulei. Class-preserving Coleman automorphisms of finite groups with a T.I. Sylow 2-subgroup[J]. Acta Mathematica Sinica, 2008, 51(6):1115-1118.
[6] HERTWECK M. Class-preserving Coleman automorphisms of finite groups[J]. Monatash Math, 2002, 136:1-7.
[7] SEHGAL S K. Units in integral group rings[M]. Harlow: Longman Scientific and Technical Press, 1993.
[8] HERTWECK M. A counterexample to the isomorphism problem for integral group rings[J]. Ann Math, 2001, 154:115-138.
[9] HERTWECK M. Class-preserving automorphisms of finite groups[J]. J Algebra, 2001, 241:1-26.
[10] ROSE J S. A course on group theory[M]. Cambridge: Cambridge University Press, 1978.
[1] 赵文英,海进科. 关于有限内幂零群和Frobenius群的Coleman自同构[J]. 山东大学学报(理学版), 2017, 52(10): 4-6.
[2] 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!