您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 68-72.doi: 10.6040/j.issn.1671-9352.0.2019.032

• • 上一篇    

临界群的p-中心自同构和应用

董慎娟, 李正兴*   

  1. 青岛大学数学与统计学院, 山东 青岛 266071
  • 发布日期:2020-02-14
  • 作者简介:董慎娟(1994— ),女,硕士研究生,研究方向为有限群理论及其表示. E-mail:892622446@qq.com*通信作者简介:李正兴(1974— ),男,博士,副教授,研究方向为有限群理论及其表示. E-mail:lzxlws@163.com
  • 基金资助:
    国家自然科学基金资助项目(71571108);国家自然科学基金国际(地区)合作交流项目(71611530712,61661136002);教育部高等学校博士学科点专项科研基金项目(20133706110002);山东省自然科学基金资助项目(ZR2015GZ007);中国博士后科学基金第59批面上项目(2016M590613);山东省博士后创新项目专项资金资助项目(201602035);青岛大学教学改革项目(JXGG2019035)

On p-central automorphisms of critical groups and applications

DONG Shen-juan, LI Zheng-xing*   

  1. College of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Published:2020-02-14

摘要: 设G是临界群, 证明了G的p-中心自同构都是内自同构。作为这个结论的应用, 证明了G的全形H的任意Coleman自同构是内自同。

关键词: p-中心自同构, Coleman自同构, 全形

Abstract: Let G be a critical group. It is proved that there exits some prime p such that every p-central automorphism of G is inner. As an application, it is proved that every Coleman automorphism of the holomorph H of G is inner.

Key words: p-central automorphism, Coleman automorphism, holomorph

中图分类号: 

  • O152.1
[1] GLAUBERMAN G. On the automorphism group of a finite group having no non-identity normal subgroups of odd order[J]. Math Z, 1966, 93: 154-160.
[2] GROSS F. Automorphisms which centralized a Sylow p-subgroup[J]. J Algebra, 1982, 77:202-233.
[3] HERTWECK M, KIMMERLE W. Coleman automorphisms of finite groups[J]. Math Z, 2002, 242: 203-215.
[4] DONG Shenjuan, LI Zhengxing. On p-central automorphisms of primitive groups and applications[J]. J Math Res Appl, 2019, 39(1): 23-30.
[5] DADE E C. Sylow-centralizing sections of outer automorphism groups of finite groups are nilpotent[J]. Math Z, 1975, 141: 57-76.
[6] 李正兴, 海进科. 阿贝尔群与极大p-群的半直积的Coleman自同构[J]. 数学物理学报, 2012, 32A(2): 344-348. LI Zhengxing, HAI Jinke. Coleman automorphisms of semidirect products of Abelian groups and maximal p-groups[J]. Acta Mathematica Scientia, 2012, 32A(2): 344-348.
[7] LI Zhengxing. Coleman automorphisms of permutational wreath products II[J]. Comm Algebra, 2018, 46(10): 4473-4479.
[8] 徐明曜. 有限群导引[M]. 北京:科学出版社, 1987. XU Mingyao. Finite groups: an introduction[M]. Beijing: Science Press, 1987.
[9] KURZWEI H, STELLMACHER B. The theory of finite groups[M]. New York: Springer-Verlag, 2004.
[10] BURNSIDE W. Theory of groups of finite order[M]. New York: Dover Publications Inc, 1911.
[11] HERTWECK M. Class-preserving automorphisms of finite groups[J]. J Algebra, 2001, 241(1): 1-26.
[12] LI Zhengxing, HAI Jinke. Coleman automorphisms of holomorphs of finite abelian groups[J]. Acta Math Sin(Engl Ser), 2014, 30(9): 1549-1554.
[13] ROBINSON D J S. A course in the theory of groups[M]. New York: Springer-Verlag, 1996.
[1] 赵乐乐,海进科. 具有某种扩张的有限群的Coleman自同构[J]. 《山东大学学报(理学版)》, 2019, 54(10): 109-112.
[2] 赵文英,海进科. 关于有限内幂零群和Frobenius群的Coleman自同构[J]. 山东大学学报(理学版), 2017, 52(10): 4-6.
[3] 海进科,王伟,何威萍. 关于有限群Coleman自同构的一个注记[J]. 山东大学学报(理学版), 2016, 51(4): 35-38.
[4] 李正兴, 杨舒先. 关于有限亚循环2-群全形的整群环的一个注记[J]. 山东大学学报(理学版), 2015, 50(10): 40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!