《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 109-112.doi: 10.6040/j.issn.1671-9352.0.2018.673
• • 上一篇
赵乐乐,海进科*
ZHAO Le-le, HAI Jin-ke*
摘要: 设G是有限特征单群被有限交换群或有限非交换单群的扩张,证明了G的每个Coleman自同构均为内自同构。
中图分类号:
[1] DADE E C. Sylow-centralizing sections of outer automorphism groups of finite groups are nilpotent[J]. Mathematische Zeitschrift, 1975, 141(1):57-76. [2] HERTWECK M, KIMMERLE W. Coleman automorphisms of finite groups[J]. Mathematische Zeitschrift, 2002, 242(2):203-215. [3] HAI Jinke, ZHU Yixin. On Coleman automorphisms of extensions of finite quasinilpotent groups by some groups[J]. Algebra Colloquium, 2018, 25(2):181-188. [4] ANTWERPEN A V. Coleman automorphisms of finite groups and their minimal normal subgroups[J]. Journal of Pure and Applied Algebra, 2018, 222(11):3379-3394. [5] 赵文英,海进科.关于有限内幂零群和Frobenius群的Coleman自同构[J]. 山东大学学报(理学版),2017,52(10):4-6. ZHAO Wenying, HAI Jinke. On Coleman automorphism of finite inner nilpotent groups and Frobenius groups[J]. Journal of Shandong University(Natural Science), 2017, 52(10):4-6. [6] KURZWEIL H,STELLMACHER B. The theory of finite groups[M]. Berlin: Springer-Verlag, 2004. [7] 海进科,王伟,何威萍. 关于有限群Coleman自同构的一个注记[J]. 山东大学学报(理学版),2016,51(4):35-38. HAI Jinke, WANG Wei, HE Weiping. A note on Coleman automorphism of finite groups[J]. Journal of Shandong University(Natural Science), 2016, 51(4):35-38. [8] HERTWECK M. Class-preserving automorphisms of finite groups[J]. Journal of Algebra, 2001, 241(1):1-26. [9] ROSE J S. A course on group theory[M]. Cambridge: Cambridge University Press, 1978. |
[1] | 赵文英,海进科. 关于有限内幂零群和Frobenius群的Coleman自同构[J]. 山东大学学报(理学版), 2017, 52(10): 4-6. |
[2] | 海进科,王伟,何威萍. 关于有限群Coleman自同构的一个注记[J]. 山东大学学报(理学版), 2016, 51(4): 35-38. |
|