《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (9): 105-113, 126.doi: 10.6040/j.issn.1671-9352.4.2022.5119
Mei YANG1,2,3,*(),Wenjing KE1,Dandong WANG1
摘要:
提出了一种多示例学习的可行域定位及快速因果实例选择(feasible region localization and fast causal instance selection for multi-instance learning, FFCM)算法, 包含3个技术。可行域定位技术基于距离度量, 从正包中选出具有代表性的实例作为候选实例; 然后利用概率分析筛选负裁判包, 以最大限度缩减选择因果实例的可行域范围。快速因果实例选择技术利用候选实例与负裁判包的因果关系构建融合包, 设计因果性评判指标, 使用先验知识从候选实例中选择出因果实例。包映射技术基于因果实例和差值映射函数, 将包映射为有较高可区分性的单向量。本算法在27个常用数据集上进行了实验, 并与6个前沿的MIL算法进行了对比, 实验结果展示了FFCM的良好分类性能。
中图分类号:
1 | XU Bicun, TING Kaiming, ZHOU Zhihua. Isolation set-kernel and its application to multi-instance learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 941-949. |
2 |
杨梅, 曾雯喜, 方宇, 等. 多示例学习的两阶段实例选择和自适应包映射算法[J]. 南京大学学报(自然科学版), 2022, 58 (1): 94- 102.
doi: 10.13232/j.cnki.jnju.2022.01.010 |
YANG Mei , ZENG Wenxi , FANG Yu , et al. Two stage instance selection and adaptive bag mapping algorithm for multi-instance learning[J]. Journal of Nanjing University (Natural Science), 2022, 58 (1): 94- 102.
doi: 10.13232/j.cnki.jnju.2022.01.010 |
|
3 | 王刚, 许信顺. 一种新的基于多示例学习的场景分类方法[J]. 山东大学学报(理学版), 2010, 45 (7): 108- 113. |
WANG Gang , XU Xinshun . A new multi-instance learning method for scene classification[J]. Journal of Shandong University(Natural Science), 2010, 45 (7): 108- 113. | |
4 | YANG Mei , ZHANG Yuxuan , WANG Xizhao , et al. Multi-instance ensemble learning with discriminative bags[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2021, 52 (9): 5456- 5467. |
5 |
ANGELIDIS S , LAPATA M . Multiple instance learning networks for fine-grained sentiment analysis[J]. Transactions of the Association for Computational Linguistics, 2018, 6, 17- 31.
doi: 10.1162/tacl_a_00002 |
6 |
TARRAGÓ D S , CORNELIS C , BELLO R , et al. A multi-instance learning wrapper based on the Rocchio classifier for web index recommendation[J]. Knowledge-Based Systems, 2014, 59, 173- 181.
doi: 10.1016/j.knosys.2014.01.008 |
7 | ZHANG Weijia, LI Jiuyong, LIU Lin. Robust multi-instance learning with stable instances[J/OL]. arXiv, 2019. https://arxiv.org/abs/1902.05066v3. |
8 |
ZHANG Minling , ZHOU Zhihua . Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, 2009, 31 (1): 47- 68.
doi: 10.1007/s10489-007-0111-x |
9 |
WEI Xiushen , WU Jianxin , ZHOU Zhihua . Scalable algorithms for multi-instance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (4): 975- 987.
doi: 10.1109/TNNLS.2016.2519102 |
10 | CHI Ziqiu , WANG Zhe , DU Wenli . Explicit metric-based multiconcept multi-instance learning with triplet and superbag[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33 (10): 5888- 5897. |
11 | HUANG Shengjun , GAO Wei , ZHOU Zhihua . Fast multi-instance multi-label learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41 (11): 2614- 2627. |
12 | GÄRTNER T, FLACH P A, KOWALCZYK A. multi-instance kernels[C]//Proceedings of the 19th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2002: 179-186. |
13 |
AMORES J . Multiple instance classification: review, taxonomy and comparative study[J]. Artificial Intelligence, 2013, 201, 81- 105.
doi: 10.1016/j.artint.2013.06.003 |
14 | ZHOU Zhihua, SUN Yunyin, LI Yufeng. Multi-instance learning by treating instances as non-I.I.D. simples[C]// Proceedings of the 26th International Conference on Machine Learning. Montreal: ACM, 2009. |
15 | WANG J, ZUCKER J D. Solving the multiple-instance problem: a lazy learning approach[C]//Proceedings of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000: 1119-1125. |
16 |
WU Jia , PAN Shirui , ZHU Xingquan , et al. Multi-instance learning with discriminative bag mapping[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (6): 1065- 1080.
doi: 10.1109/TKDE.2017.2788430 |
17 | SVRKAYA E , YÜKSEKGÖNÜL M , BAYDOǦAN M G . Learning prototypes for multiple instance learning[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2021, 29 (7): 2901- 2919. |
18 | HE Jianjun , GU Hong , WANG Zhelong . Bayesian multi-instance multi-label learning using Gaussian process prior[J]. Machine Learning, 2012, 88 (1): 273- 295. |
19 | DECENCIōRE E , ZHANG X , CAZUGUEL G , et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis & Stereology, 2014, 33 (3): 231- 234. |
20 | SRINIVASAN A, MUGGLETON S, KING R D. Comparing the use of background knowledge by inductive logic programming systems[C]//Proceeding of the 5th International Workshop on Inductive Logic Programming. Leuven: Springer-Verlag, 1995. |
21 |
KANDEMIR M , HAMPRECHT F A . Computer-aided diagnosis from weak supervision: a benchmarking study[J]. Computerized Medical Imaging and Graphics, 2015, 42, 44- 50.
doi: 10.1016/j.compmedimag.2014.11.010 |
22 |
LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
23 | REUTEMANN P, PFAHRINGER B, FRANK E. A toolbox for learning from relational data with propositional and multi-instance learners[C]//Australasian Joint Conference on Artificial Intelligence. Berlin: Springer, 2004: 1017-1023. |
24 |
ZHOU Zhihua , JIANG Kai , LI Ming . Multi-instance learning based web mining[J]. Applied Intelligence, 2005, 22 (2): 135- 140.
doi: 10.1007/s10489-005-5602-z |
25 | DEMŠAR J . Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7, 1- 30. |
[1] | 曹喜燕,林福财,金铭,李进金. 程序性知识评估: 从问题空间到可辨识知识结构[J]. 《山东大学学报(理学版)》, 2023, 58(7): 97-105, 114. |
[2] | 陈晶晶,杨延涛. 解变分不等式与不动点问题的一种修正的惯性投影算法[J]. 《山东大学学报(理学版)》, 2023, 58(3): 64-76. |
[3] | 席艳丽,陈鹏玉. 隐式分数阶模糊微分方程初值问题解的唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(4): 85-90. |
[4] | 张芳娟. 因子上保持混合三重η-积的非线性映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 92-96. |
[5] | 费秀海,张海芳. 广义矩阵代数上一类非全局非线性三重高阶可导映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 97-105. |
[6] | 唐善刚. 置换群作用于一类映射集的等价类的计数[J]. 《山东大学学报(理学版)》, 2021, 56(8): 67-75. |
[7] | 张芳娟. 因子von Neumann代数上ξ-斜Jordan可导映射的一个刻画[J]. 《山东大学学报(理学版)》, 2020, 55(7): 32-37. |
[8] | 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25-31. |
[9] | 屈娟,冯玉明,李艳平,李丽. 可证明的基于扩展混沌映射的匿名多服务器身份认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 44-51. |
[10] | 张芳娟. *-代数上强保持新积的映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 46-49. |
[11] | 冯丹丹,吴洪博. 拓扑系统中开远域及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(11): 90-96. |
[12] | 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84. |
[13] | 费秀海,戴磊. 广义矩阵代数上双可导映射的可加性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 85-90. |
[14] | 杨丹丹. 带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理[J]. 山东大学学报(理学版), 2018, 53(2): 46-51. |
[15] | 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76. |
|