您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 85-90.doi: 10.6040/j.issn.1671-9352.0.2021.325

• • 上一篇    

隐式分数阶模糊微分方程初值问题解的唯一性

席艳丽,陈鹏玉*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2022-03-29
  • 作者简介:席艳丽(1997— ),女,硕士研究生,研究方向为非线性泛函分析及其应用. E-mail:XYL9702@163.com*通信作者简介:陈鹏玉(1986— ),男,博士,副教授,硕士生导师,研究方向为非线性泛函分析及其应用. E-mail:chpengyu123@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061063);西北师范大学青年教师科研能力提升计划资助项目(NWNU-LKQN2019-3);西北师范大学参与式研讨课教学改革项目

Uniqueness of solutions for initial value problems of implicit fractional order fuzzy differential equations

XI Yan-li, CHEN Peng-yu*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-03-29

摘要: 运用幂压缩映射原理,研究了隐式分数阶模糊微分方程初值问题{CDα,pa+u(t)=f(t,u(t), CDα,pa+u(t)),u(a)=u0解的唯一性,其中 00 是给定的实数,CDα,pa+ 是模糊Caputo-Katugampola分数阶广义Hukuhara导数, f:[a,b]×E×E→E是一个模糊函数,E是模糊空间。

关键词: Caputo-Katugampola 分数阶导数, 初值问题, 幂压缩映射原理, 分数阶模糊微分方程

Abstract: By using the principle of power compression mapping, this paper obtains the uniqueness of solution to the initial value problems of implicit fractional fuzzy differential equations{CDα,pa+u(t)=f(t,u(t), CDα,pa+u(t)),u(a)=u0,where 00,1), p>0 is a fixed real number, and CDα,pa+ is the fuzzy Caputo-Katugampola fractional generalized Hukuhara derivative, f:[a,b]×E×E→E is a fuzzy function. E is the fuzzy space.

Key words: Caputo-Katugampola fractional derivative, initial value problem, power compression mapping principle, fractional fuzzy differential equations

中图分类号: 

  • O175.14
[1] LONG H V, DONG N P. An extension of Krasnoselskiis fixed point theorem and its application to nonlocal problem for implicit fractional differential systems with uncertainty[J]. Journal of Fixed Point Theory and Applications, 2018, 20:37.
[2] 董佳华, 冯育强, 蒋君. 非线性隐式分数阶微分方程耦合系统初值问题[J]. 应用数学学报, 2019, 42(3):356-370. DONG Jiahua, FENG Yuqiang, JIANG Jun. Initial value problem of a coupled system of nonlinear implicit fractional differential equations[J]. Journal of Applied Mathematics, 2019, 42(3):356-370.
[3] MAITAMA S H, ZHAO W D. Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives[J]. Computational and Applied Mathematics, 2021, 40:86.
[4] NGO V H, HO V, TRAN M D. Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach[J]. Fuzzy Sets and Systems, 2019, 375:70-99.
[5] NGO V H, HO V. A survey on the initial value problems of fuzzy implicit fractional differential equations[J]. Fuzzy Sets and Systems, 2020, 400:90-133.
[6] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[7] DIAMOND P, KLOEDEN P. Metric spaces of fuzzy sets[J]. Fuzzy Sets and Systems, 1990, 35:241-249.
[8] NEGOITA C V, RALESCU D A. Applications of fuzzy sets to systems analysis[M]. Basel: Birkhauser Verlag, 1975.
[9] PURI M L, DAN A R. Differentials of fuzzy functions[J]. Journal of Mathematical Analysis and Applications, 1983, 91(2):552-558.
[10] BEDE B, STEFANINI L. Generalized differentiability of fuzzy-valued functions[J]. Fuzzy Sets and Systems, 2013, 230:119-141.
[11] BEDE B, GAL S G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations[J]. Fuzzy Sets and Systems, 2005, 151:581-599.
[12] BEDE B, STEFANINI L. Generalized differentiability of fuzzy-valued functions[J]. Fuzzy Sets and Systems, 2013, 230:119-141.
[13] HOA N V, LUPULESCU V, OREGAN D. A note on initial value problems for fractional fuzzy differential equations[J]. Fuzzy Sets and Systems, 2018, 347:54-69.
[14] 刘炳初. 泛函分析[M]. 北京: 科学出版社, 2004: 38-39. LIU Bingchu. Functional analysis[M]. Beijing: Science Press, 2004: 38-39.
[15] 陈纪修,於崇华, 金路. 数学分析(下册)[M]. 北京: 高等教育出版社,2004. CHEN Jixiu, YU Chonghua, JIN Lu. Mathematical analysis(Volume 2)[M]. Beijing: Higher Education Press, 2004.
[1] 安佳辉,陈鹏玉. 变分数阶微分方程初值问题解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 41-47.
[2] 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60-64.
[3] 王建国,刘春晗. Banach空间积-微分方程含间断项边值问题的解[J]. J4, 2013, 48(10): 18-22.
[4] 李耀红1,2,张海燕1. Banach空间中二阶非线性混合型积分-微分方程初值问题的解[J]. J4, 2010, 45(12): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!