您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 1-12.doi: 10.6040/j.issn.1671-9352.0.2022.066

• •    下一篇

基于变精度可能算子的网络概念认知

范敏1,2,罗杉1,2,李金海1,2*   

  1. 1. 昆明理工大学数据科学研究中心, 云南 昆明 650500;2. 昆明理工大学理学院, 云南 昆明 650500
  • 出版日期:2022-08-20 发布日期:2022-06-29
  • 作者简介:范敏(1975— ), 女, 博士, 副教授, 硕士生导师, 研究方向为概念格、粗糙集、粒计算、社会网络分析. E-mail:fmkmust@163. com*通信作者简介:李金海(1984— ), 男, 博士, 教授, 博士生导师, 研究方向为大数据分析、概念认知学习、粒计算、智能系统分析与集成. E-mail:jhlixjtu@163. com
  • 基金资助:
    国家自然科学基金资助项目(11971211,12171388)

Cognition of network concepts based on variable precision possibility operator

FAN Min1,2, LUO Shan1,2, LI Jin-hai1,2*   

  1. 1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Online:2022-08-20 Published:2022-06-29

摘要: 网络上的概念认知是网络数据分析领域的一个重要方向。从形式概念分析中的必然算子、可能算子出发,提出变精度可能算子,表明经典可能算子是变精度可能算子的特殊情形;进一步,对可能算子的性质进行研究,并解释它们在传染病网络研究中的意义;接着,根据变精度可能算子提出两种网络广义概念及其上下近似与边界,通过实例说明基于变精度可能算子的上下近似和边界在网络概念认知中具有更丰富的语义;然后,结合复杂网络分析中的网络特征值方法,定义网络弱概念,并提出基于变精度可能算子的网络弱概念获取方法;最后,利用文中算法在UCI数据集上进行测试,结果证实了变精度可能算子在网络概念认知中的优势。

关键词: 概念认知, 形式背景, 网络弱概念, 必然算子, 变精度可能算子

Abstract: Concept cognition in a network is an important direction in the field of network data analysis. Starting from the necessity operator and possibility operator in formal concept analysis, this paper puts forward variable precision possibility operator, and illustrates that the classical possibility operators are special cases of the variable precision possibility operators. Furthermore, some properties of the possibility operators are studied, and their significances in the study of infectious disease networks are explained. Then, based on the variable precision possibility operators, two generalized network concepts and their upper approximations, lower approximations and boundary regions are proposed, and the upper and lower approximations and their boundary regions under variable precision possibility operators are illustrated to have much richer semantics through an example. After that, combined with the network eigenvalue method in complex network analysis, the network weak concepts are defined, and a network weak concept acquisition method based on variable precision possibility operator is presented. Finally, our algorithm is used to conduct some experiments on the UCI database, and the obtained results show that variable-precision possibility operators have advantages in network concept cognition.

Key words: concept cognition, formal context, network weak concept, necessity operator, variable precision possibility operator

中图分类号: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C] //Ordered Sets. Berlin: Springer,1982: 445-470.
[2] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. New York: Springer-Verlag, 1999: 18-45.
[3] KUMAR C A, ISHWARYA M S, LOO C K. Formal concept analysis approach to cognitive functionalities of bidirectional associative memory[J]. Biologically Inspired Cognitive Architectures, 2015, 12:20-33.
[4] HAO Fei, YANG Yixuan, MIN Geyong, et al. Incremental construction of three-way concept lattice for knowledge discovery in social networks[J]. Information Sciences, 2021, 578:257-280.
[5] 徐伟华,李金海,魏玲,等. 形式概念分析理论与应用[M].北京: 科学出版社, 2016: 188-205. XU Weihua, LI Jinhai, WEI Ling, et al. Formal concept analysis: theory and application[M]. Beijing: Science Press, 2016: 188-205.
[6] 李进金,李克典,吴端恭. 基于粗糙集与概念格的知识系统模型[M]. 北京: 科学出版社, 2013: 119-142. LI Jinjin, LI Kedian, WU Duangong. Knowledge system model based on rough set and concept lattice[M]. Beijing: Science Press, 2013: 119-142.
[7] 张文修,吴伟志,梁吉业,等. 粗糙集理论与方法[M]. 北京: 科学出版社, 2003: 12-16. ZHANG Wenxiu, WU Weizhi, LIANG Jiye, et al. Rough set theory and methods[M]. Beijing: Science Press, 2003: 12-16.
[8] TONELLA P. Using a concept lattice of decomposition slices for program understanding and impact analysis[J]. IEEE Transactions on Software Engineering, 2003, 29(6):495-509.
[9] 朵琳,杨丙. 一种基于用户兴趣概念格的推荐评分预测方法[J]. 小型微型计算机系统, 2020, 41(10):2104-2108. DUO Lin, YANG Bing. Recommendation rating prediction based on user interest concept lattice[J]. Journal of Chinese Computer Systems, 2020, 41(10):2104-2108.
[10] ROCCO C M, HERNANDEZ-PERDOMO E, MUN J. Introduction to formal concept analysis and its applications in reliability engineering[J]. Reliability Engineering & System Safety, 2020, 202:107002.
[11] ANANIAS K, MISSAOUI R, RUAS P, et al. Triadic concept approximation[J]. Information Sciences, 2021, 572:126-146.
[12] ZOU Li, LIN Hongmei, SONG Xiaoying, et al. Rule extraction based on linguistic-valued intuitionistic fuzzy layered concept lattice[J]. International Journal of Approximate Reasoning, 2021, 133:1-16.
[13] ZOU Caifeng, DENG Huifang. Using fuzzy concept lattice for intelligent disease diagnosis[J]. IEEE Access, 2017, 5:236-242.
[14] CHEN Jianhong, ZHONG Xudong, XU Zitong, et al. Analysis of mine safety performance evaluation law based on matter-element analysis and rough set of concept lattice reduction[J]. IEEE Access, 2021, 9:94169-94180.
[15] DUNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[C] //Proceedings of the 2002 IEEE International Conference on Data Mining. Washington, D.C.: IEEE, 2002: 155-162.
[16] YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C] //Proceedings of 4th International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 2004: 59-68.
[17] 闫梦宇,李金海. 概念格共有与独有属性(对象)的关系研究[J]. 计算机科学与探索, 2019, 13(4):702-710. YAN Mengyu, LI Jinhai. Research on relationship between common and unique attributes(objects)of concept lattice[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4):702-710.
[18] ZHAO Yingxiu, LI Jinhai, LIU Wenqi, et al. Cognitive concept learning from incomplete information[J]. International Journal of Machine Learning and Cybernetics, 2017, 7(4):159-170.
[19] LI Jinhai, HUANG Chenchen, QI Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378:244-263.
[20] QIAN Ting, WEI Ling, QI Jianjun. A theoretical study on the object(property)oriented concept lattices based on three-way decisions[J]. Soft Computing, 2019, 23(10):9477-9489.
[21] 米允龙,李金海,刘文奇,等. MapReduce框架下的粒概念认知学习系统研究[J]. 电子学报, 2018, 46(2):289-297. MI Yunlong, LI Jinhai, LIU Wenqi. Research on granular concept cognitive learning system under MapReduce framework[J]. Acta Electronica Sinica, 2018, 46(2):289-297.
[22] SHI Yong, MI Yunlong, LI Jinhai, et al. Concept-cognitive learning model for incremental concept learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2):809-821.
[23] LI Jinhai, LIU Zhiming. Granule description in knowledge granularity and representation[J]. Knowledge-Based Systems, 2020, 203(11):106160.
[24] 林聚任. 社会网络分析: 理论、方法与应用[M]. 北京: 北京师范大学出版社, 2009: 306-307. LIN Juren. Social network analysis: theory, methods and applications[M]. Beijing: Beijing Normal University Publishing House, 2009: 306-307.
[25] PASTOR-SATORRAS R, CASTELLANO C, MIEGHEM P V, et al. Epidemic processes in complex networks[J]. Reviews of Modern Physics, 2015, 87(3):925-979.
[26] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[27] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[28] SHARMA N, VERMAC A K, GUPTAA A K. Spatial network based model forecasting transmission and control of COVID-19[J]. Physica A: Statistical Mechanics and its Applications, 2020, 581:126223.
[29] MARON B A, ALTUCCI L, BALLIGAND J L, et al. A global network for network medicine[J]. NPJ Systems Biology and Applications, 2020, 6:29.
[30] PAUL A, BHATTACHARJEE J K, PAL A, et al. Emergence of universality in the transmission dynamics of COVID-19[J]. Scientific Reports, 2021, 11:18891.
[31] GYSI D M, VALLE T D, ZITNIK M, et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19[J]. Proceedings of the National Academy of Sciences, 2021, 118(19):e2025581118.
[32] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London Series A, 1927, 115(772):700-721.
[33] ROMAN H E, CROCCOLO F. Spreading of infections on network models: percolation clusters and random trees[J]. Mathematics, 2021, 9(23):1-22.
[34] PASTOR-SATORRAS R, VESPIGNANI A. Immunization of complex networks[J]. Physical Review E, 2001, 65(3):036104.
[35] BOGUN A M, PASTOR-SATORRAS R. Epidemic spreading in correlated complex networks[J]. Physical Review E, 2002, 66(4):047104.
[36] LEVENTHAL G E, HILL A L, NOWAK M A, et al. Evolution and emergence of infectious diseases in theoretical and real-world networks[J]. Nature Communications, 2015, 6:6101.
[37] SCARPINO S V, PETRI G. On the predictability of infectious disease outbreaks[J]. Nature Communications, 2019, 10:898.
[38] ZHANG Yuexia, PAN Dawei. Layered SIRS model of information spread in complex networks[J]. Applied Mathematics and Computation, 2021, 411:126524.
[39] 马娜,范敏,李金海. 复杂网络下的概念认知学习[J]. 南京大学学报(自然科学), 2019, 55(4):609-623. MA Na, FAN Min, LI Jinhai. Concept-cognitive learning under complex network[J]. Journal of Nanjing University(Natural Science), 2019, 55(4):609-623.
[40] 刘文星,范敏,李金海. 网络形式背景下的社区划分方法研究[J]. 计算机科学与探索, 2021, 15(8):1441-1449. LIU Wenxing, FAN Min, LI Jinhai. Research on community division method under network formal context[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8):1441-1449.
[1] 张静,马建敏. 基于依赖空间的F-C变精度概念格[J]. 《山东大学学报(理学版)》, 2021, 56(1): 68-74.
[2] 谢小贤,李进金,陈东晓,林荣德. 基于布尔矩阵的保持二元关系不变的概念约简[J]. 《山东大学学报(理学版)》, 2020, 55(5): 32-45.
[3] 陈东晓,李进金,林荣德,陈应生. 多尺度形式背景及其粗糙近似[J]. 《山东大学学报(理学版)》, 2020, 55(5): 22-31.
[4] 李双伶,岳晓威,秦克云. 多源形式背景中的粒结构[J]. 《山东大学学报(理学版)》, 2020, 55(5): 46-54.
[5] 贺晓丽,折延宏. 基于属性粒化的近似概念分析及规则提取[J]. 《山东大学学报(理学版)》, 2020, 55(5): 13-21.
[6] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[7] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
[8] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[9] 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120.
[10] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[11] 任睿思,魏玲,祁建军. 三支弱协调决策形式背景的规则获取[J]. 山东大学学报(理学版), 2018, 53(6): 76-85.
[12] 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21.
[13] 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110.
[14] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[15] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .