《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (5): 22-31.doi: 10.6040/j.issn.1671-9352.c.2020.001
• • 上一篇
陈东晓1,2,李进金1,3*,林荣德1,2,陈应生1
CHEN Dong-xiao1,2, LI Jin-jin1,3*, LIN Rong-de1,2, CHEN Ying-sheng1
摘要: 首先提出一种新的多尺度形式背景的概念。在该背景中,随着尺度的变化,每一个属性所拥有对象呈现单调性的变化。其次,引入形式背景的粗糙近似概念,并讨论在多尺度形式背景下,不同尺度下近似集的关系。最后,在多尺度形式背景和决策多尺度形式背景下,通过借助信任函数和似然函数,研究它们在不同尺度下的关系,给出上、下近似协调集的定义。
中图分类号:
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C] //Ordered Sets. Berlin: Springer, 1982: 445-470. [2] 魏玲,祁建军,张文修. 决策形式背景的概念格属性约简[J].中国科学E辑:信息科学,2008, 38(2):195-208. WEI Ling, QI Jianjun, ZHANG Wenxiu. Attribute reduction theory of concept lattice based on decision formal contexts[J]. Science in China Series E: Information Science, 2008, 38(2):195-208. [3] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356. [4] YAO Yiyu. Concept lattices in rough set theory[C] //Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society. Washington: IEEE, 2004: 796-801. [5] DUNTSCH N, GEDIGA G. Modal-style operators in qualitative data analysis[C] //Proceedings of the 2002 IEEE International Conference on Data Mining. Washington: IEEE, 2002: 155-162. [6] YAO Yiyu. Rough-set concept analysis: interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346/347:442-462. [7] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6):949-970. [8] WU Weizhi, LEUNG Yee. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information Sciences, 2011, 181(18):3878-3897. [9] WU Weizhi, LEUNG Yee. Optimal scale selection for multi-scale decision tables[J]. International Journal of Approximate Reasoning, 2013, 54(8):1107-1129. [10] 吴伟志.多粒度粗糙集数据分析研究的回顾与展望[J].西北大学学报(自然科学版),2018, 48(4):501-512. WU Weizhi. Reviews and prospects on the study of multi-granularityrough set data analysis[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(4):501-512. [11] 吴伟志,高仓健,李同军.序粒度标记结构及其粗糙近似[J].计算机研究与发展,2014, 51(12):2623-2632. WU Weizhi, GAO Cangjian, LI Tongjun. Ordered granular labeled structures and rough approximations[J]. Journal of Computer Research and Development, 2014, 51(12):2623-2632. [12] 吴伟志,杨丽,谭安辉,等. 广义不完备多粒度标记决策系统的粒度选择[J].计算机研究与发展,2018,55(6):149-158. WU Weizhi, YANG Li, TAN Anhui, et al. Granularity selections in generalized incomplete multi-granular labeled decision systems[J]. Journal of Computer Research and Development, 2018, 55(6):149-158. [13] 吴伟志,庄宇斌,谭安辉,等.不协调广义多尺度决策系统的尺度组合[J].模式识别与人工智能,2018,31(6):485-494. WU Weizhi, ZHUANG Yubin, TAN Anhui, et al. Scale combinations in inconsistent generalized multi-scale decision systems[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(6):485-494. [14] 牛东苒,吴伟志,李同军.广义多尺度决策系统中基于可变精度的最优尺度组合[J].模式识别与人工智能,2019,32(11):965-974. NIU Dongran, WU Weizhi, LI Tongjun. Variable precision based optimal scale combinations in generalized multi-scale decision systems[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(11): 965-974. [15] 郝晨,范敏,李金海,等. 多标记背景下基于粒标记规则的最优标记选择[J]. 模式识别与人工智能, 2016, 29(3):272-280. HAO Chen, FAN Min, LI Jinhai, et al. Optimal scale selection in multi-scale contexts based on granular scale rules[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3):272-280. [16] 李金海, 吴伟志, 邓硕.形式概念分析的多粒度标记理论[J].山东大学学报(理学版), 2019,54(2):30-40. LI Jinhai, WU Weizhi, DENG Shuo. Multi-scale theory in formal concept analysis[J]. Journal of Shandong University(Natural Science), 2019, 54(2):30-40. [17] BELOHLAVEK R, BAETS B D, KONECNY J. Granularity of attributes in formal concept analysis[J]. Information Sciences, 2014, 260(1):149-170. [18] SHE Yanhong, HE Xiaoli, QIAN Ting, et al. A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(11):3263-3271. [19] LI Feng, HU Baoqing, WANG Jun. Stepwise optimal scale selection for multi-scale decision tables via attribute significance[J]. Knowledge-Based Systems, 2017, 129:4-16. [20] LI Lifeng. Multi-level interval-valued fuzzy concept lattices and their attribute reduction[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1):45-56. [21] 张文修, 仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2005. ZHANG Wenxiu, QIU Guofang. Uncertain decision making based on rough sets[M]. Beijing: Tsinghua University Press, 2005. [22] DEMPSTER A P. Upper and lower probability inferences based on a sample from a finite univariate population[J]. Biometrika, 1967, 54(3/4):515-528. [23] SHAFER G.A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976. [24] SKOWRON A. The relationship between rough set theory and evidence theory[J]. Bulletin of Polish Academy of Science: Mathematics, 1989, 37(1):87-90. [25] SKOWRON A. The rough sets theory and evidence theory[J]. Fundamenta Informaticae, 1990, 13(3):245-262. [26] YAO Yiyu, LINGRAS P J. Interpretations of belief functions in the theory of rough sets[J].Information Sciences, 1998, 104(1/2):81-106. [27] WU Weizhi, LEUNG Yee, ZHANG Wenxiu. Connections between rough set theory and Dempster-Shafer theory of evidence[J]. International Journal of General Systems, 2002, 31(4):405-430. [28] CHEN Degan, LI Wanlu, ZHANG Xiao, et al. Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(3): 908-923. [29] 车晓雅,李磊军,米据生.基于证据理论刻画多粒度覆盖粗糙集的数值属性[J].智能系统学报,2016,11(4):481-486. CHE Xiaoya, LI Leijun, MI Jusheng. Evidence-theory-based numerical characterization of multi-granulation covering rough sets[J]. CAAI Transactions on Intelligent Systems, 2016, 11(4):481-486. [30] 张燕兰,李长清. 基于证据理论的覆盖决策信息系统的属性约简[J]. 模式识别与人工智能, 2018, 31(9):27-38. ZHANG Yanlan, LI Changqing. Attribute reduction of covering decision information system based on evidence theory[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(9):797-808. [31] 张燕兰,李长清,许晴媛. 基于证据理论的覆盖决策信息系统约简的数值刻画[J].南京航空航天大学学报,2019, 51(5):599-608. ZHANG Yanlan, LI Changqing, XU Qingyuan. Evidence-theory-based numerical characterization of attribute reduction in covering decision information system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5):599-608. |
[1] | 贺晓丽,折延宏. 基于属性粒化的近似概念分析及规则提取[J]. 《山东大学学报(理学版)》, 2020, 55(5): 13-21. |
[2] | 张燕兰, 李长清. 协调映射下覆盖粗糙集的不变性质[J]. 山东大学学报(理学版), 2014, 49(08): 92-96. |
|