您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 104-115.doi: 10.6040/j.issn.1671-9352.8.2024.024

• • 上一篇    

基于粒球计算的多粒度支持向量回归算法

华有霖1,邵亚斌1,2*,朱学勤1   

  1. 1.重庆邮电大学理学院, 重庆 400065;2.网络空间大数据智能安全教育部重点实验室, 重庆 400065
  • 发布日期:2025-07-01
  • 通讯作者: 邵亚斌(1974— ),男,教授,博士,研究方向为模糊分析学、粗糙集与粒计算、数据分析的不确定方法等. E-mail:shaoyb@cqupt.edu.cn
  • 作者简介:华有霖(2000— ),男,硕士研究生,研究方向为机器学习、数据分析的不确定方法等. E-mail:s220603003@stu.cqupt.edu.cn*通信作者:邵亚斌(1974— ),男,教授,博士,研究方向为模糊分析学、粗糙集与粒计算、数据分析的不确定方法等. E-mail:shaoyb@cqupt.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12061067,62176033);重庆市自然科学基金面上资助项目(CSTB2023NSCQ-MSX0707)

Multi-granularity support vector regression algorithm based on granular ball computing

HUA Youlin1, SHAO Yabin1,2*, ZHU Xueqin1   

  1. 1. School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
    2. Key Laboratory of Cyberspace Big Data Intelligent Security, Ministry of Education, Chongqing 400065, China
  • Published:2025-07-01

摘要: 为了实现支持向量回归算法的高效性和鲁棒性,本文将多粒度粒球计算融合到支持向量回归算法中,提出了一种基于粒球计算的多粒度粒球支持向量回归算法。该算法将粒球中的半径信息加入到约束条件中,将原本基于样本点的支持向量算法替换为基于粒球的支持向量回归算法。同时,本文研究了多粒度粒球支持向量回归机的对偶模型。实验结果表明,采用人工数据集和加州大学欧文分校(University of California-Irvine, UCI)公开数据集时,多粒度粒球支持向量回归机的计算效率和鲁棒性均得到提升。

关键词: 数据挖掘, 粒计算, 多粒度表示, 多粒度粒球计算, 支持向量回归机

Abstract: To achieve both efficiency and robustness in the support vector regression algorithm, multi-granularity granular ball computing is integrated into the support vector regression algorithm. A multi-granularity granular ball support vector regression algorithm is proposed based on granular ball computing. The radius information from granular balls is incorporated into the models constraint conditions, replacing the traditional sample point based support vector regression algorithm with a granular ball based support vector regression algorithm. Additionally, the dual model of the multi-granularity granular ball support vector regression is investigated, and a particle swarm optimization algorithm is utilized to solve it. Experimental results show that on both artificial datasets and University of California-Irvine(UCI)publicly available datasets, computational efficiency and robustness are improved by the multi-granularity granular ball support vector regression.

Key words: data mining, granular computing, multi-granularity representation, multi-granularity granular ball computing, support vector regression

中图分类号: 

  • TP391
[1] VAPNIK V N.The nature of statistical learning theory[M]. New York: Springer, 2000:117-125.
[2] AHMED H U, MOSTAFA R R, MOHAMMED A, et al. Support vector regression(SVR)and grey wolf optimization(GWO)to predict the compressive strength of GGBFS-based geopolymer concrete[J]. Neural Computing and Applications, 2023, 35(3):2909-2926.
[3] INAPAKURTHI R K, MITRA K. Optimal surrogate building using SVR for an industrial grinding process[J]. Materials and Manufacturing Processes, 2022, 37(15):1701-1707.
[4] WANG Yougan, WU Jinran, HU Zhihua, et al. A new algorithm for support vector regression with automatic selection of hyperparameters[J]. Pattern Recognition, 2023, 133:108989.
[5] PENG Xinjun. TSVR: an efficient twin support vector machine for regression[J]. Neural Networks, 2010, 23(3):365-372.
[6] DING Shifei, ZHANG Zichen, GUO Lili. Survey on twin support vector regression[J]. Acta Electronica Sinica, 2023, 51(4): 1117-1134.
[7] CHEN Lin. Topological structure in visual perception[J]. Science, 1982, 218(4573):699-700.
[8] TANG Yuchun, BO Jin, ZHANG Yanqing. Granular support vector machines with association rules mining for protein homology prediction[J]. Artificial Intelligence in Medicine, 2005, 35(1/2):121-134.
[9] 郭虎升,王文剑. 动态粒度支持向量回归机[J]. 软件学报,2013,24(11):2535-2547. GUO Husheng, WANG Wenjian. Dynamical granular support vector regression machine[J]. Journal of Software, 2013, 24(11):2535-2547.
[10] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[11] DRUCKER H, BURGES C J, KAUFMAN L, et al. Support vector regression machines[J]. Advances in Neural Information Processing Systems, 1996, 9:155-161.
[12] SCHÖLKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5):1207-1245.
[13] SUYKENS J A K, VANDEWALLE J, DE MOOR B. Optimal control by least squares support vector machines[J]. Neural Networks, 2001, 14(1):23-35.
[14] GUO Husheng, WANG Wenjian, MEN Changqian. A novel learning model-kernel granular support vector machine[C] //2009 International Conference on Machine Learning and Cybernetics. Baoding: IEEE, 2009, 2:930-935.
[15] ZADEH L. Fuzzy sets and information granularity[M] /// GUPTA N, RAGADE R, YAGER R. Advances in Fuzzy Set Theory and Applications. Amsterdam: World Scientific Publishing: 3-18.
[16] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356.
[17] WANG Guoyin, YAO Yiyu, YU Hong. A survey on rough set theory and applications[J]. Journal of Computer Research and Development, 2009, 32(7):1229-1246.
[18] ZADEH L A. Fuzzy logic computing with words[J]. IEEE Transactions on Fuzzy Sets and Systems, 1999, 4(2):103-111.
[19] ZHANG Lin, ZHANG Bo. Theory of fuzzy quotient space(methods of fuzzy granular computing)[J]. Journal of Software, 2003, 14(4):770-776.
[20] YAO Yiyu, YANG Jilin. Granular rough sets and granular shadowed sets: three-way approximations in pawlak approximation spaces[J]. International Journal of Approximate Reasoning, 2022, 142:231-247.
[21] XIA Shuyin, ZHENG Shaoyuan, WANG Guoyin, et al. Granular ball sampling for noisy label classification or imbalanced classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(4):2144-2155.
[22] XIA Shuyin, DAI Xiaochuan, WANG Guoyin, et al. An efficient and adaptive granular-ball generation method in classification problem[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4):5319-5331.
[23] XIE Qin, ZHANG Qinghua, XIA Shuyin, et al. GBG++: a fast and stable granular ball generation method for classification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2):2022-2036.
[24] XIE Jiang, LIAN Jiang, XIA Shuyin, et al. An adaptive density clustering approach with multi-granularity fusion[J]. Information Fusion, 2024, 106:102273.
[25] XIE Jiang, KONG Weiyu, XIA Shuyin, et al. An efficient spectral clustering algorithm based on granular-ball[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9):9743-9753.
[1] 杨志强,冯山,尹伊,吴慧佳. 一种多因素融合的高效离群点检测方法[J]. 《山东大学学报(理学版)》, 2024, 59(8): 118-126.
[2] 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44.
[3] 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11.
[4] 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89.
[5] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[6] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[7] 张超,梁英,方浩汕. 支持隐私保护的社交网络信息推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 9-18.
[8] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
[9] 谢小杰,梁英,董祥祥. 社交网络用户敏感属性迭代识别方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 10-17, 27.
[10] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[11] 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120.
[12] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
[13] 康海燕,马跃雷. 差分隐私保护在数据挖掘中应用综述[J]. 山东大学学报(理学版), 2017, 52(3): 16-23.
[14] 柳欣,徐秋亮,张波. 满足可控关联性的合作群签名方案[J]. 山东大学学报(理学版), 2016, 51(9): 18-35.
[15] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!