您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 1-11.doi: 10.6040/j.issn.1671-9352.7.2023.239

• •    下一篇

基于粒神经网络的多标签学习

陈玉明1,郑光宇1*,焦娜2   

  1. 1.厦门理工学院计算机与信息工程学院, 福建 厦门 361024;2.华东政法大学刑事法学院, 上海 201620
  • 发布日期:2024-05-09
  • 通讯作者: 郑光宇(2000— ),男,硕士研究生,研究方向为机器学习、粒计算. E-mail:2270546692@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61976183)

Multi-label learning based on granular neural networks

CHEN Yumin1, ZHENG Guangyu1*, JIAO Na2   

  1. 1. School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China;
    2. School of Criminal Law, East China University of Political Science and Law, Shanghai 201620, China
  • Published:2024-05-09

摘要: 引入粒计算理论,提出基于粒神经网络的多标签学习方法,采用相似度粒化的技术获得数据在结构上的相关性。样本在单特征上粒化成粒子,多特征上的粒子形成粒向量,并且定义粒子与粒向量的运算规则。在此基础上,引入粒损失函数,构建粒神经网络进行多标签学习,采用多个Mulan多标签数据集进行实验,在多种评价指标上与现有的多标签分类算法比较,结果表明了粒神经网络多标签学习算法的有效性与可行性。

关键词: 粒计算, 深度学习, 粒神经网络, 多标签学习, 粒向量

Abstract: This paper introduces the theory of granular computing and proposes a multi-label learning method based on granular neural networks. This method utilizes similarity granulation to capture the structural correlations in the data. Samples are granulated into granules on individual features, and granules across multiple features form granule vectors. Operations on granules and granule vectors are defined. On this basis, a granular loss function is introduced and a granular neural network is constructed for multi-label learning. Experiments are conducted on multiple Mulan multi-label datasets and compared with existing multi-label classification algorithms across various evaluation metrics. The results demonstrate the effectiveness and feasibility of the granular neural network multi-label learning algorithm.

Key words: granular computing, deep learning, granular neural networks, multi-label learning, granule vectors

中图分类号: 

  • TP181
[1] 肖萍婉. 基于混合神经网络的多标签文本分类研究[D]. 贵阳: 贵州大学, 2021. XIAO Pingwan. Research on multi-label text classification based on hybrid neural network[D]. Guiyang: Guizhou University, 2021.
[2] DAI Yong, SONG Weiwei, LI Yi, et al. Feature disentangling and reciprocal learning with label-guided similarity for multi-label image retrieval[J]. Neurocomputing, 2022, 511:353-365.
[3] GRIHORIOS T, IOANNIS K. Multi-label classification:an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3):1-13.
[4] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2006, 40(7):2038-2048.
[5] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C] // Neural Information Processing Systems. British Columbia: NIPS, 2001:681-687.
[6] ZHANG Minling, ZHOU Zhihua. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1338-1351.
[7] HUANG Yan, WANG Wei, WANG Liang, et al. Multi-task deep neural network for multi-label learning[C] //2013 20th IEEE International Conference on Image Proceeding. Melbourne: IEEE, 2013:2897-2900.
[8] ZHANG Minling. ML-RBF: RBF neural networks for multi-label learning [J]. Neural Processing Letters, 2009, 29(2):61-74.
[9] 张展云,罗川,李天瑞,等. 基于组标签的多标签流特征选择算法[J]. 南京大学学报(自然科学), 2023, 59(1):67-75. ZHANG Zhanyun, LUO Chuan, LI Tianrui, et al. Multi-label streaming feature selection based on group labels[J]. Journal of Nanjing University(Natural Science), 2023, 59(1):67-75.
[10] 欧阳宵,陶红,范瑞东,等. 利用标签相关性先验的弱监督多标签学习方法[J]. 软件学报, 2023, 34(4):1732-1748. OUYANG Xiao, TAO Hong, FAN Ruidong, et al. Weakly supervised multi-label learning using prior label correlation information[J]. Journal of Software, 2023, 34(4):1732-1748.
[11] 容斌元,徐媛媛,吕亚兰,等. 融合标签局部相关性的标签分布学习[J]. 山东大学学报(理学版), 2022, 57(7):53-64. RONG Binyuan, XU Yuanyuan, LÜ Yalan, et al. Label distribution learning by fusion of local correlation of labels[J]. Journal of Shandong University(Natural Science), 2022, 57(7):53-64.
[12] 王国胤,张清华,胡军. 粒计算研究综述[J]. 智能系统学报, 2007, 2(6):8-26. WANG Guoyin, ZHANG Qinghua, HU Jun. An overview of granular computing[J]. CAAI Transactions on Intelligent Systems, 2007, 2(6):8-26.
[13] LIN T Y. Granular computing on binary relations I: data mining and neighborhood systems[J]. Rough Sets in Knowledge Discovery, 1998, 2:165-166.
[14] ZHANG Y Q, FRASER M D, GAGLIANO R A, et al. Granular neural networks for numerical-linguistic data fusion and knowledge discovery[J].IEEE Transactions on Neural Networks, 2000, 11(3):658-667.
[15] 陈玉明,蔡国强,卢俊文,等. 一种邻域粒K均值聚类方法[J]. 控制与决策, 2023, 38(3):857-864. CHEN Yuming, CAI Guoqiang, LU Junwen, et al. A neighborhood granular K-means clustering method[J]. Control and Decision, 2023, 38(3):857-864.
[16] 陈玉明,李伟. 粒向量与K近邻粒分类器[J]. 计算机研究与发展, 2019, 56(12):2600-2611. CHEN Yumin, LI Wei. Granular vectors and K nearest neighbor granular classifiers[J]. Journal of Computer Research and Development, 2019, 56(12):2600-2611.
[17] 赵海峰,余强,曹俞旦. 基于粒计算的多标签懒惰学习算法[J]. 计算机科学, 2014, 41(12):160-163. ZHAO Haifeng, YU qiang, CAO Yudan. Multi-label learning algorithm based on granular computing[J]. Computer Science, 2014, 41(12):160-163.
[18] JESSE R, PETER R, BERNHARD P, et al. MEKA: a multi-label/multi-target extension to WEKA[J].Journal of Machine Learning Research, 2016, 17(1):667-671.
[19] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[C] //European Conference on Machine Learning. Warsaw: Springer, 2007:406-417.
[20] JESSE R, BERNHARD P, GEOFF H, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3):333-359.
[21] ZHANG Qianwen, ZHONG Yun, ZHANG Minling. Feature-induced labeling information enrichment for multi-label learning[C] //Proceeding of the Thirty-second Conference on Artificial Intelligence. New Orleans: AAAI, 2018:4446-4453.
[1] 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89, 99.
[2] 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44.
[3] 李程,车文刚,高盛祥. 一种用于航拍图像的目标检测算法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 59-70.
[4] 仲诚诚,周恒,张梓童,张春雷. LAC-UNet: 基于胶囊表达局部-整体特征关系的语义分割模型[J]. 《山东大学学报(理学版)》, 2023, 58(11): 116-126.
[5] 张要,马盈仓,杨小飞,朱恒东,杨婷. 结合流形结构与柔性嵌入的多标签特征选择[J]. 《山东大学学报(理学版)》, 2021, 56(7): 91-102.
[6] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[7] 徐菲菲,许赟杰. 基于Arc-LSTM的人职匹配研究[J]. 《山东大学学报(理学版)》, 2021, 56(1): 83-90.
[8] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[9] 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76.
[10] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
[11] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[12] 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120.
[13] 刘飚,路哲,黄雨薇,焦萌,李泉其,薛瑞. 神经网络结构在功耗分析中的性能对比[J]. 《山东大学学报(理学版)》, 2019, 54(1): 60-66.
[14] 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35.
[15] 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曲晓英,赵 静 . 含时线性Klein-Gordon方程的解[J]. J4, 2007, 42(7): 22 -26 .
[2] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12 -15 .
[3] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[4] 张明明,秦永彬. 基于前序关系的非确定型有穷自动机极小化算法[J]. J4, 2010, 45(7): 34 -38 .
[5] 邵国俊,茹淼焱*,孙雪莹. 聚醚接枝聚羧酸系减水剂合成工艺研究[J]. J4, 2013, 48(05): 29 -33 .
[6] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[7] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[8] 裴胜玉,周永权*. 一种基于混沌变异的多目标粒子群优化算法[J]. J4, 2010, 45(7): 18 -23 .
[9] 秦兆宇,刘师莲*,杨银荣,刘芙君,李建远,宋春华 . 白斑综合征中国对虾肝胰腺蛋白质组学研究的技术探索[J]. J4, 2007, 42(7): 5 -08 .
[10] 伍代勇. 一类具有反馈控制非线性离散Logistic模型的全局吸引性[J]. J4, 2013, 48(4): 114 -110 .