《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 1-11.doi: 10.6040/j.issn.1671-9352.7.2023.239
• • 下一篇
陈玉明1,郑光宇1*,焦娜2
CHEN Yumin1, ZHENG Guangyu1*, JIAO Na2
摘要: 引入粒计算理论,提出基于粒神经网络的多标签学习方法,采用相似度粒化的技术获得数据在结构上的相关性。样本在单特征上粒化成粒子,多特征上的粒子形成粒向量,并且定义粒子与粒向量的运算规则。在此基础上,引入粒损失函数,构建粒神经网络进行多标签学习,采用多个Mulan多标签数据集进行实验,在多种评价指标上与现有的多标签分类算法比较,结果表明了粒神经网络多标签学习算法的有效性与可行性。
中图分类号:
[1] 肖萍婉. 基于混合神经网络的多标签文本分类研究[D]. 贵阳: 贵州大学, 2021. XIAO Pingwan. Research on multi-label text classification based on hybrid neural network[D]. Guiyang: Guizhou University, 2021. [2] DAI Yong, SONG Weiwei, LI Yi, et al. Feature disentangling and reciprocal learning with label-guided similarity for multi-label image retrieval[J]. Neurocomputing, 2022, 511:353-365. [3] GRIHORIOS T, IOANNIS K. Multi-label classification:an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3):1-13. [4] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2006, 40(7):2038-2048. [5] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C] // Neural Information Processing Systems. British Columbia: NIPS, 2001:681-687. [6] ZHANG Minling, ZHOU Zhihua. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1338-1351. [7] HUANG Yan, WANG Wei, WANG Liang, et al. Multi-task deep neural network for multi-label learning[C] //2013 20th IEEE International Conference on Image Proceeding. Melbourne: IEEE, 2013:2897-2900. [8] ZHANG Minling. ML-RBF: RBF neural networks for multi-label learning [J]. Neural Processing Letters, 2009, 29(2):61-74. [9] 张展云,罗川,李天瑞,等. 基于组标签的多标签流特征选择算法[J]. 南京大学学报(自然科学), 2023, 59(1):67-75. ZHANG Zhanyun, LUO Chuan, LI Tianrui, et al. Multi-label streaming feature selection based on group labels[J]. Journal of Nanjing University(Natural Science), 2023, 59(1):67-75. [10] 欧阳宵,陶红,范瑞东,等. 利用标签相关性先验的弱监督多标签学习方法[J]. 软件学报, 2023, 34(4):1732-1748. OUYANG Xiao, TAO Hong, FAN Ruidong, et al. Weakly supervised multi-label learning using prior label correlation information[J]. Journal of Software, 2023, 34(4):1732-1748. [11] 容斌元,徐媛媛,吕亚兰,等. 融合标签局部相关性的标签分布学习[J]. 山东大学学报(理学版), 2022, 57(7):53-64. RONG Binyuan, XU Yuanyuan, LÜ Yalan, et al. Label distribution learning by fusion of local correlation of labels[J]. Journal of Shandong University(Natural Science), 2022, 57(7):53-64. [12] 王国胤,张清华,胡军. 粒计算研究综述[J]. 智能系统学报, 2007, 2(6):8-26. WANG Guoyin, ZHANG Qinghua, HU Jun. An overview of granular computing[J]. CAAI Transactions on Intelligent Systems, 2007, 2(6):8-26. [13] LIN T Y. Granular computing on binary relations I: data mining and neighborhood systems[J]. Rough Sets in Knowledge Discovery, 1998, 2:165-166. [14] ZHANG Y Q, FRASER M D, GAGLIANO R A, et al. Granular neural networks for numerical-linguistic data fusion and knowledge discovery[J].IEEE Transactions on Neural Networks, 2000, 11(3):658-667. [15] 陈玉明,蔡国强,卢俊文,等. 一种邻域粒K均值聚类方法[J]. 控制与决策, 2023, 38(3):857-864. CHEN Yuming, CAI Guoqiang, LU Junwen, et al. A neighborhood granular K-means clustering method[J]. Control and Decision, 2023, 38(3):857-864. [16] 陈玉明,李伟. 粒向量与K近邻粒分类器[J]. 计算机研究与发展, 2019, 56(12):2600-2611. CHEN Yumin, LI Wei. Granular vectors and K nearest neighbor granular classifiers[J]. Journal of Computer Research and Development, 2019, 56(12):2600-2611. [17] 赵海峰,余强,曹俞旦. 基于粒计算的多标签懒惰学习算法[J]. 计算机科学, 2014, 41(12):160-163. ZHAO Haifeng, YU qiang, CAO Yudan. Multi-label learning algorithm based on granular computing[J]. Computer Science, 2014, 41(12):160-163. [18] JESSE R, PETER R, BERNHARD P, et al. MEKA: a multi-label/multi-target extension to WEKA[J].Journal of Machine Learning Research, 2016, 17(1):667-671. [19] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[C] //European Conference on Machine Learning. Warsaw: Springer, 2007:406-417. [20] JESSE R, BERNHARD P, GEOFF H, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3):333-359. [21] ZHANG Qianwen, ZHONG Yun, ZHANG Minling. Feature-induced labeling information enrichment for multi-label learning[C] //Proceeding of the Thirty-second Conference on Artificial Intelligence. New Orleans: AAAI, 2018:4446-4453. |
[1] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89, 99. |
[2] | 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44. |
[3] | 李程,车文刚,高盛祥. 一种用于航拍图像的目标检测算法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 59-70. |
[4] | 仲诚诚,周恒,张梓童,张春雷. LAC-UNet: 基于胶囊表达局部-整体特征关系的语义分割模型[J]. 《山东大学学报(理学版)》, 2023, 58(11): 116-126. |
[5] | 张要,马盈仓,杨小飞,朱恒东,杨婷. 结合流形结构与柔性嵌入的多标签特征选择[J]. 《山东大学学报(理学版)》, 2021, 56(7): 91-102. |
[6] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
[7] | 徐菲菲,许赟杰. 基于Arc-LSTM的人职匹配研究[J]. 《山东大学学报(理学版)》, 2021, 56(1): 83-90. |
[8] | 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12. |
[9] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[10] | 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115. |
[11] | 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40. |
[12] | 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120. |
[13] | 刘飚,路哲,黄雨薇,焦萌,李泉其,薛瑞. 神经网络结构在功耗分析中的性能对比[J]. 《山东大学学报(理学版)》, 2019, 54(1): 60-66. |
[14] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[15] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
|