《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 116-126.doi: 10.6040/j.issn.1671-9352.0.2022.488
Chengcheng ZHONG1(),Heng ZHOU2,*(),Zitong ZHANG3,Chunlei ZHANG4
摘要:
针对原生U-Net对空间结构特征表达能力不足的问题, 将胶囊结构引入到U-Net语义分割模型中, 提出了LAC-UNet模型, 即通过胶囊向量获得更加精细的空间结构。LAC-UNet模型将局部的像素级信息编码为胶囊, 并以胶囊作为U-Net的基本特征单元, 具有更精细的空间结构特征表达能力。首先使用卷积操作将局部的像素级信息输入初级胶囊; 其次, 使用局部动态路由算法将初级胶囊在数字胶囊层整合为高级胶囊, 其中, 局部路由算法引入了空间与通道权重, 使胶囊在编码和整合局部信息时, 具有更强的局部上下文线索捕捉能力; 最后, 使用不同的评价指标(精度、Dice等)进行模型性能评价。试验结果表明, LAC-UNet在DRIVE、CHASEDB1、CrackForest和MSRC 4种数据集中均达到最佳的分割效果。
中图分类号:
1 | 易三莉, 陈建亭, 贺建峰. ASR-UNet: 一种基于注意力机制改进的视网膜血管分割算法[J]. 山东大学学报(理学版), 2021, 56 (9): 13- 20. |
YI Sanli , CHEN Jianting , HE Jianfeng . ASR-UNet: an improved retinal vessels segmentation algorithm based on attention mechanism[J]. Journal of Shandong University(Natural Science), 2021, 56 (9): 13- 20. | |
2 | 郭文鹃, 杨公平, 董晋利. 指纹图像分割方法综述[J]. 山东大学学报(理学版), 2010, 45 (7): 94- 101. |
GUO Wenjuan , YANG Gongping , DONG Jinli . A review of fingerprint image segmentation methods[J]. Journal of Shandong University(Natural Science), 2010, 45 (7): 94- 101. | |
3 | 杨鹏, 蔡青青, 孙昊, 等. 基于卷积神经网络的室内场景识别[J]. 郑州大学学报(理学版), 2018, 50 (3): 73- 77. |
YANG Peng , CAI Qingqing , SUN Hao , et al. Indoor scene recognition based on convolutional neural network[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50 (3): 73- 77. | |
4 | 杜中强, 唐林波, 韩煜祺. 面向嵌入式平台的车道线检测方法[J]. 红外与激光工程, 2022, 51 (7): 483- 490. |
DU Zhongqiang , TANG Linbo , HAN Yuqi . Lane line detection method for embedded platform[J]. Infrared and Laser Engineering, 2022, 51 (7): 483- 490. | |
5 | MINAEE S , BOYKOV Y , PORIKLI F , et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3523- 3542. |
6 | 高兴波, 史旭华, 葛群峰, 等. 面向动态物体场景的视觉SLAM综述[J]. 机器人, 2021, 43 (6): 733- 750. |
GAO Xingbo , SHI Xuhua , GE Qunfeng , et al. A survey of visual SLAM for scenes with dynamic objects[J]. Robot, 2021, 43 (6): 733- 750. | |
7 | CHEN Chen , QIN Chen , QIU Huaqi , et al. Deep learning for cardiac image segmentation: a review[J]. Frontiers in Cardiovascular Medicine, 2020, 7, 25. |
8 | MAGADZA T , VIRIRI S . Deep learning for brain tumor segmentation: a survey of state-of-the-art[J]. Journal of Imaging, 2021, 7 (2): 19. |
9 | LONG J , SHELHAMER E , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 (4): 640- 651. |
10 | WANG C L, YANG B, LIAO Y W. Unsupervised image segmentation using convolutional autoencoder with total variation regularization as preprocessing[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA, USA: IEEE, 2017: 1877-1881. |
11 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. Berlin: Springer, 2015: 234-241. |
12 | ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin: Springer, 2018: 3-11. |
13 | BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495. |
14 | ZHAO Pengyu, ZHANG Yuanxing, BIAN Kaigui, et al. Laddernet: knowledge transfer based viewpoint prediction in 360° video[C]//Proc of IEEE ICASSP. Brighton, UK: IEEE, 2019: 1657-1661. |
15 | WU H K, ZHANG J G, HUANG K Q, et al. FastFCN: rethinking dilated convolution in the backbone for semantic segmentation[EB/OL]. (2019-03-28)[2023-10-13]. https://arxiv.org/abs/1903.11816 |
16 | MANINIS K K , PONT-TUSET J , ARBELAEZ P , et al. Convolutional oriented boundaries: from image segmentation to high-level tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 819- 833. |
17 | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL]. (2021-10-28)[2023-10-13]. https://arxiv.org/abs/2105.15203 |
18 | HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[M]//Lecture Notes in Computer Science. Berlin. Heidelberg: Springer, 2011: 44-51. |
19 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 3859-3869. |
20 | HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[C]//Proc of the 6th International Conference on Learning Representations, [s. n. ]: Open Review, 2018. |
21 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2017: 2261-2269. |
22 | SAHU S K, KUMAR P, SINGH A P. Dynamic routing using inter capsule routing protocol between capsules[C]//2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). Cambridge, UK: IEEE, 2018: 1-5. |
23 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2022: 9992-10002. |
24 | XIAO T T, LIU Y C, ZHOU B L, et al. Unified perceptual parsing for scene understanding[M]//Computer Vision-ECCV 2018. Berlin: Springer International Publishing, 2018: 432-448. |
25 | ZHOU Y Q, YU H C, SHI H. Study group learning: improving retinal vessel segmentation trained with noisy labels[M]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021. Cham: Springer, 2021: 57-67. |
26 | CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08)[2023-10-13]. https://arxiv.org/abs/2102.04306 |
27 | CHEN Y L, LI X W, YAO H T, et al. Adherent nuclei edge detection based on caps-unet[C]//2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Exeter, UK: IEEE, 2021: 889-894. |
[1] | 李程,车文刚,高盛祥. 一种用于航拍图像的目标检测算法[J]. 《山东大学学报(理学版)》, 2023, 58(9): 59-70. |
[2] | 易三莉,陈建亭,贺建峰. ASR-UNet: 一种基于注意力机制改进的视网膜血管[J]. 《山东大学学报(理学版)》, 2021, 56(9): 13-20. |
[3] | 徐菲菲,许赟杰. 基于Arc-LSTM的人职匹配研究[J]. 《山东大学学报(理学版)》, 2021, 56(1): 83-90. |
[4] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[5] | 刘飚,路哲,黄雨薇,焦萌,李泉其,薛瑞. 神经网络结构在功耗分析中的性能对比[J]. 《山东大学学报(理学版)》, 2019, 54(1): 60-66. |
[6] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[7] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[8] | 刘铭, 昝红英, 原慧斌. 基于SVM与RNN的文本情感关键句判定与抽取[J]. 山东大学学报(理学版), 2014, 49(11): 68-73. |
|