《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 82-89.doi: 10.6040/j.issn.1671-9352.7.2023.384
方逢祺1,吴伟志1,2*
FANG Fengqi1, WU Weizhi1,2*
摘要: 针对决策为集合值的数据集的知识约简问题,定义了决策集值系统、确定性决策集值系统和倾向性决策集值系统等几类决策系统的概念。对比了决策集值系统与相类似的几类信息系统的区别,明确了决策集值系统的相关特点。结合三支决策方法,定义了决策集值系统上的单值约简与多值约简的概念,并给出了在确定性决策集值系统上计算约简的方法。结果表明,该方法在确定性决策集值系统上能有效提取信息。
中图分类号:
[1] ZADEH L A. Fuzzy sets and information granularity[M]. Amsterdam: North-Holland, 1979:3-18. [2] LIN Tsauyoung. Granular computing on binary relations I: data mining and neighborhood system[M]. Heidelberg: Physica-Verlag, 1998:107-121. [3] LIN Tsauyoung. Granular computing: structures, representations, and applications[C] //Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Berlin: Springer, 2003:16-24. [4] YAO Yiyu. Granular computing: basic issues and possible solutions[C] //Proceedings of the 5th Joint Conference on Information Sciences. Durham: Duke University Press, 2000:186-189. [5] 苗夺谦,王国胤,刘清,等. 粒计算:过去、现在与展望[M]. 北京:科学出版社, 2007. MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular computing: past, present and future[M]. Beijing: Science Press, 2007. [6] 苗夺谦,李德毅,姚一豫,等. 不确定性与粒计算[M]. 北京:科学出版社, 2011. MIAO Duoqian, LI Deyi, YAO Yiyu, et al. Uncertainty and granular computing[M]. Beijing: Science Press, 2011. [7] PAWLAK Z. Rough sets: theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic Publishers, 1991. [8] INUIGUCHI M, HIRANO S, TSUMOTO S. Rough set theory and granular computing[M]. Berlin: Springer, 2003. [9] LIN Tsauyoung, YAO Yiyu, ZADEH L A. Data mining, rough sets and granular computing[M]. Heidelberg: Physica-Verlag, 2002. [10] 徐伟华,米据生,吴伟志. 基于包含度的粒计算方法与应用[M]. 北京:科学出版社, 2015. XU Weihua, MI Jusheng, WU Weizhi. Granular computing methods and applications based on inclusion degree[M]. Beijing: Science Press, 2015. [11] PEDRYCZ W, SKOWRON A, KREINOVICH V. Handbook of granular computing[M]. New York: Wiley, 2008. [12] 张文修,梁怡,吴伟志.信息系统与知识发现[M]. 北京:科学出版社, 2003. ZHANG Wenxiu, LIANG Yi, WU Weizhi. Information systems and knowledge discovery[M]. Beijing: Science Press, 2003. [13] 段洁,胡清华,张灵均,等.基于邻域粗糙集的多标记分类特征选择算法[J].计算机研究与发展,2015,52(1):56-65. DUAN Jie, HU Qinghua, ZHANG Lingjun, et al. Feature selection for multi-label classification based on neighborhood rough sets[J]. Journal of Computer Research and Development, 2015, 52(1):56-65. [14] PAWLAK Z, SOWINSKI R. Rough set approach to multi-attribute decision analysis[J]. European Journal of Operational Research, 1994, 72(3):443-459. [15] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets methodology for sorting problems in presence of multiple attributes and criteria[J]. European Journal of Operational Research, 2002, 138(2):247-259. [16] MENDONCA G H M, FERREIRA F G D C, CARDOSO R T N, et al. Multi-attribute decision making applied to financial portfolio optimization problem[J]. Expert Systems with Applications, 2020, 158:113527. [17] NIU Jiaojiao, CHEN Degang, LI Jinhai, et al. A dynamic rule-based classification model via granular computing[J]. Information Sciences, 2022, 584:325-341. [18] XIE Xiaojun, QIN Xiaolin. A novel incremental attribute reduction approach for dynamic incomplete decision systems[J]. International Journal of Approximate Reasoning, 2018, 93:443-462. [19] YANG Xin, LIU Dun, YANG Xibei, et al. Incremental fuzzy probability decision-theoretic approaches to dynamic three-way approximations[J]. Information Sciences, 2021, 550:71-90. [20] HUANG Yanyong, LI Tianrui, LUO Chuan, et al. Matrix-based dynamic updating rough fuzzy approximations for data mining[J]. Knowledge-based Systems, 2017, 119:273-283. [21] ZHANG Junbo, LI Tianrui, RUAN Da, et al. Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems[J]. International Journal of Approximate Reasoning, 2012, 53(4):620-635. [22] GU Shenming, WU Weizhi. On knowledge acquisition in multi-scale decision systems[J]. International Journal of Machine Learning and Cybernetics, 2013, 4:477-486. [23] SHE Yanhong, LI Jinhai, YANG Hailong. A local approach to rule induction in multi-scale decision tables[J]. Knowledge-based Systems, 2015, 89:398-410. [24] WU Weizhi, QIAN Yuhua, LI Tongjun, et al. On rule acquisition in incomplete multi-scale decision tables[J]. Information Sciences, 2017, 378:282-302. [25] XIE Junping, YANG Minhua, LI Jinhai, et al. Rule acquisition and optimal scale selection in multi-scale formal decision contexts and their applications to smart city[J]. Future Generation Computer Systems, 2018, 83:564-581. [26] HAO Chen, LI Jinhai, FAN Min, et al. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J]. Information Sciences, 2017, 415/416:213-232. [27] AZAM N, ZHANG Yan, YAO Jingtao. Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets[J]. European Journal of Operational Research, 2017, 261:704-714. [28] CABITZA F, CIUCCI D, LOCORO A. Exploiting collective knowledge with three-way decision theory:cases from the questionnaire-based research[J]. International Journal of Approximate Reasoning, 2017, 83:356-370. [29] HU Baoqing. Three-way decisions based on semi-three-way decision spaces[J]. Information Sciences, 2017, 382/383:415-440. [30] HU Mengjun, YAO Yiyu. Structured approximations as a basis for three-way decisions in rough set theory[J]. Knowledge-based Systems, 2019, 165:92-109. [31] YANG Xin, LI Tianrui, LIU Dun, et al. A temporal-spatial composite sequential approach of three-way granular computing[J]. Information Sciences, 2019, 486:171-189. [32] LANG Guangming, MIAO Duoqian, FUJITA H. Three-way group conflict analysis based on Pythagorean fuzzy set theory[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(3):447-461. [33] YU Hong, WANG Xincheng, WANG Guoyin, et al. An active three-way clustering method via low-rank matrices for multi-view data[J]. Information Sciences, 2020, 507:823-839. [34] YUE Xiaodong, CHEN Yufei, MIAO Duoqian, et al. Fuzzy neighborhood covering for three-way classification[J]. Information Sciences, 2020, 507:795-808. [35] ZHAO Xuerong, HU Baoqing. Three-way decisions with decision-theoretic rough sets in multiset-valued information tables[J]. Information Sciences, 2020, 507:684-699. [36] ZHAO Yan, YAO Yiyu, LUO Feng. Data analysis based on discernibility and indiscernibility[J]. Information Sciences, 2007, 177:4959-4976. |
[1] | 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22. |
[2] | 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51. |
[3] | 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44. |
[4] | 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11. |
[5] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
[6] | 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79. |
[7] | 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51. |
[8] | 吴凡,孔祥智. 基于模糊信息系统的模糊β-覆盖粗糙集模型[J]. 《山东大学学报(理学版)》, 2023, 58(5): 10-16. |
[9] | 时俊鹏,张燕兰. 面向对象删除的局部邻域粗糙集动态更新算法[J]. 《山东大学学报(理学版)》, 2023, 58(5): 17-25. |
[10] | 金雷,冯涛,张少谱. 基于概率多值信息系统的冲突分析和决策分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 91-107. |
[11] | 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51. |
[12] | 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66. |
[13] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
[14] | 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76. |
[15] | 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37. |
|