您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 52-62.doi: 10.6040/j.issn.1671-9352.0.2023.398

• • 上一篇    下一篇

基于优化可辨识矩阵的多粒度粗糙集属性约简算法

宋苏洋1,叶军1,2*,曾广财1,孙清1   

  1. 1.南昌工程学院信息工程学院, 江西 南昌 330000;2.江西省水信息协同感知与智能处理重点实验室, 江西 南昌 330000
  • 发布日期:2024-05-09
  • 通讯作者: 叶军(1968— ),男,教授,硕士生导师,硕士,研究方向为粗糙集与粒计算理论等. E-mail:2003992646@nit.edu.cn
  • 基金资助:
    江西省教育厅科技资助项目(GJJ211920)

Multi-granularity rough set attribute reduction algorithm based on optimized discernibility matrix

SONG Suyang1, YE Jun1,2*, ZENG Guangcai1, SUN Qing1   

  1. 1. School of Information Engineering, Nanchang Institute of Technology, Nanchang 330000, Jiangxi, China;
    2. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang 330000, Jiangxi, China
  • Published:2024-05-09

摘要: 为了解决多粒度粗糙集中构造可辨识矩阵计算量过大等问题,提出了一种基于优化可辨识矩阵的改进的多粒度属性约简算法。使用属性重要度作为相似度构造不同粒度空间,输出各粒度空间的优化可辨识矩阵中的核属性,用于求解最终约简,对约简集进行反向冗余检测,避免存在冗余属性。结果表明:该算法能够有效降低时间复杂度,提升约简效率。实例和多个UCI数据集的实验结果验证了该算法的有效性。

关键词: 多粒度粗糙集, 粒度空间, 优化可辨识矩阵, 属性约简算法

Abstract: An improved multi-granularity attribute reduction algorithm based on optimized discernible matrix is proposed to solve the problem of excessive computation for constructing discernible matrix in multi-granularity rough sets. Attribute importance is used as similarity to construct different particle size spaces, and kernel attributes in the optimized discernibility matrix of each particle size space are output to solve the final reduction, and reverse redundancy detection is performed on the reduced set to avoid redundant attributes. The results show that this algorithm can effectively reduce the time complexity and improve the reduction efficiency. Examples and experimental results of several UCI data sets demonstrate the effectiveness of the proposed algorithm.

Key words: multi-granulation rough sets, granularity spaces, optimized discernibility matrix, attribute reduction algorithm

中图分类号: 

  • TP181
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Science, 2010, 180(6): 949-970.
[3] 钱进,汤大伟,洪承鑫.多粒度层次序贯三支决策模型研究[J]. 山东大学学报(理学版), 2022, 57(9):33-45. QIAN Jin, TANG Dawei, HONG Chengxin. Research on multi-granularity hierarchical sequential three-way decision model[J]. Journal of Shandong University(Natural Science), 2022, 57(9):33-45.
[4] 李金海,周新然.多粒度决策形式背景的属性约简[J]. 模式识别与人工智能, 2022, 35(5):387-400. LI Jinhai, ZHOU Xinran. Attribute reduction in multi-granularity formal decision contexts[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(5):387-400.
[5] 钱进,童志钢,余鹰,等.基于广义自适应多粒度的多源信息融合研究[J]. 智能系统学报, 2023, 18(1):173-185. QIAN Jin, TONG Zhigang, YU Ying, et al. Multi-source information fusion through generalized adaptive multigranulation[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1):173-185.
[6] 张文娟,李进金,林艺东.基于图的悲观多粒度粗糙集粒度约简[J]. 山东大学学报(理学版), 2021, 56(1):60-67. ZHANG Wenjuan, LI Jinjin, LIN Yidong. Graph-based granularity reduction in pessimistic multi-granulation rough set[J]. Journal of Shandong University(Natural Science), 2021, 56(1):60-67.
[7] 薛占熬,张敏,赵丽平,等.集对优势关系下多粒度决策粗糙集的可变三支决策模型[J]. 计算机科学, 2021, 48(1):157-166. XUE Zhanao, ZHANG Min, ZHAO Liping, et al. Variable three-way decision model of multi-granulation decision rough sets under set-pair dominance relation[J]. Computer Science, 2021, 48(1):157-166.
[8] 骆公志,陈佳馨.诱导覆盖关系下的加权多粒度粗糙集及应用[J]. 计算机应用研究, 2021, 38(1):106-109. LUO Gongzhi, CHEN Jiaxin. Weighted multi-granulation rough set under induced covering relation and its application[J]. Application Research of Computers, 2021, 38(1):106-109.
[9] 刘凯,谭安辉,顾沈明.基于辨识矩阵的不完备多粒度约简[J]. 模式识别与人工智能, 2020, 33(9):799-810. LIU Kai, TAN Anhui, GU Shenming. Incomplete multi-granulation reduction based on discernibility matrix[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(9):799-810.
[10] 郑文彬,李进金,张燕兰,等. 基于矩阵的多粒度粗糙集粒度约简方法[J]. 南京大学学报(自然科学), 2021, 57(1): 141-149. ZHENG Wenbin, LI Jinjin, ZHANG Yanlan, et al. Matrix-based granulation reduction method for multi-granulation rough sets[J]. Journal of Nanjing University(Natural Science), 2021, 57(1):141-149.
[11] 徐怡,唐静昕. 基于优化可辨识矩阵和改进差别信息树的属性约简算法[J]. 计算机科学, 2020, 47(3):73-78. XU Yi, TANG Jingxin. Attribute reduction algorithm based on optimized discernibility matrix and improving discernibility information tree[J]. Computer Science, 2020, 47(3):73-78.
[12] 翁冉,王俊红,魏巍,等. 基于区分矩阵的多粒度属性约简[J]. 南京航空航天大学学报, 2019, 51(5): 636-642. WENG Ran, WANG Junhong, WEI Wei, et al. Multi-granulation attribute reduction based on discernibility matrix[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5):636-642.
[13] 王国胤. 决策表核属性的计算方法[J]. 计算机学报, 2003(5): 611-615. WANG Guoyin. Calculation methods for core attributes of decision table[J]. Chinese Journal of Computers, 2003(5): 611-615.
[14] YAO Jingtao, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1977-1989.
[15] YAO Jingtao. Information granulation and granular relationships[C] //IEEE International Conference on Granular Computing. Beijing: IEEE, 2005.
[16] 李丹. 多粒度粗糙集模型下的矩阵属性约简算法[J]. 计算机工程与应用, 2017, 53(19):168-172. LI Dan. Matrix-based attribute reduction approach under multigranulation rough set[J]. Computer Engineering and Applications, 2017, 53(19):168-172.
[17] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55:225-237.
[18] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M] //SLOWINSKI R. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic Publisher, 1991:331-362.
[19] GE Meijun, FAN Nianbai, SUN Tao. Attribute reduction algorithm based on structure discernibility matrix in composite information systems[C] //International Conference on Information Science and Technology. Wuhan: ITM Web of Conferences, 2017, 11:01016.
[1] 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104.
[2] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45.
[3] 张文娟,李进金,林艺东. 基于图的悲观多粒度粗糙集粒度约简[J]. 《山东大学学报(理学版)》, 2021, 56(1): 60-67.
[4] 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61.
[5] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108 -113 .
[2] 陆玮洁,主沉浮,宋 翠,杨艳丽 . 中药郁金中无机离子的毛细管电泳法测定[J]. J4, 2007, 42(7): 13 -18 .
[3] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[4] 任敏1,2,张光辉1. 右半直线上依分布收敛独立随机环境中随机游动的吸收概率[J]. J4, 2013, 48(1): 93 -99 .
[5] 徐俊峰. 关于复代数微分方程亚纯解的增长级[J]. J4, 2010, 45(6): 91 -93 .
[6] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[7] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[8] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1 -6 .
[9] 王红妹,肖敏*,李正义,李玉梅,钱新民 . 转糖基β-半乳糖苷酶产生菌筛选和鉴定及酶催化生成低聚半乳糖[J]. J4, 2006, 41(1): 133 -139 .
[10] 张佳丽,苗连英,宋文耀. 最大度为8不含相邻4-圈的1-平面图边色数[J]. 山东大学学报(理学版), 2014, 49(04): 18 -23 .