《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (5): 52-62.doi: 10.6040/j.issn.1671-9352.0.2023.398
宋苏洋1,叶军1,2*,曾广财1,孙清1
SONG Suyang1, YE Jun1,2*, ZENG Guangcai1, SUN Qing1
摘要: 为了解决多粒度粗糙集中构造可辨识矩阵计算量过大等问题,提出了一种基于优化可辨识矩阵的改进的多粒度属性约简算法。使用属性重要度作为相似度构造不同粒度空间,输出各粒度空间的优化可辨识矩阵中的核属性,用于求解最终约简,对约简集进行反向冗余检测,避免存在冗余属性。结果表明:该算法能够有效降低时间复杂度,提升约简效率。实例和多个UCI数据集的实验结果验证了该算法的有效性。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Science, 2010, 180(6): 949-970. [3] 钱进,汤大伟,洪承鑫.多粒度层次序贯三支决策模型研究[J]. 山东大学学报(理学版), 2022, 57(9):33-45. QIAN Jin, TANG Dawei, HONG Chengxin. Research on multi-granularity hierarchical sequential three-way decision model[J]. Journal of Shandong University(Natural Science), 2022, 57(9):33-45. [4] 李金海,周新然.多粒度决策形式背景的属性约简[J]. 模式识别与人工智能, 2022, 35(5):387-400. LI Jinhai, ZHOU Xinran. Attribute reduction in multi-granularity formal decision contexts[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(5):387-400. [5] 钱进,童志钢,余鹰,等.基于广义自适应多粒度的多源信息融合研究[J]. 智能系统学报, 2023, 18(1):173-185. QIAN Jin, TONG Zhigang, YU Ying, et al. Multi-source information fusion through generalized adaptive multigranulation[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1):173-185. [6] 张文娟,李进金,林艺东.基于图的悲观多粒度粗糙集粒度约简[J]. 山东大学学报(理学版), 2021, 56(1):60-67. ZHANG Wenjuan, LI Jinjin, LIN Yidong. Graph-based granularity reduction in pessimistic multi-granulation rough set[J]. Journal of Shandong University(Natural Science), 2021, 56(1):60-67. [7] 薛占熬,张敏,赵丽平,等.集对优势关系下多粒度决策粗糙集的可变三支决策模型[J]. 计算机科学, 2021, 48(1):157-166. XUE Zhanao, ZHANG Min, ZHAO Liping, et al. Variable three-way decision model of multi-granulation decision rough sets under set-pair dominance relation[J]. Computer Science, 2021, 48(1):157-166. [8] 骆公志,陈佳馨.诱导覆盖关系下的加权多粒度粗糙集及应用[J]. 计算机应用研究, 2021, 38(1):106-109. LUO Gongzhi, CHEN Jiaxin. Weighted multi-granulation rough set under induced covering relation and its application[J]. Application Research of Computers, 2021, 38(1):106-109. [9] 刘凯,谭安辉,顾沈明.基于辨识矩阵的不完备多粒度约简[J]. 模式识别与人工智能, 2020, 33(9):799-810. LIU Kai, TAN Anhui, GU Shenming. Incomplete multi-granulation reduction based on discernibility matrix[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(9):799-810. [10] 郑文彬,李进金,张燕兰,等. 基于矩阵的多粒度粗糙集粒度约简方法[J]. 南京大学学报(自然科学), 2021, 57(1): 141-149. ZHENG Wenbin, LI Jinjin, ZHANG Yanlan, et al. Matrix-based granulation reduction method for multi-granulation rough sets[J]. Journal of Nanjing University(Natural Science), 2021, 57(1):141-149. [11] 徐怡,唐静昕. 基于优化可辨识矩阵和改进差别信息树的属性约简算法[J]. 计算机科学, 2020, 47(3):73-78. XU Yi, TANG Jingxin. Attribute reduction algorithm based on optimized discernibility matrix and improving discernibility information tree[J]. Computer Science, 2020, 47(3):73-78. [12] 翁冉,王俊红,魏巍,等. 基于区分矩阵的多粒度属性约简[J]. 南京航空航天大学学报, 2019, 51(5): 636-642. WENG Ran, WANG Junhong, WEI Wei, et al. Multi-granulation attribute reduction based on discernibility matrix[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5):636-642. [13] 王国胤. 决策表核属性的计算方法[J]. 计算机学报, 2003(5): 611-615. WANG Guoyin. Calculation methods for core attributes of decision table[J]. Chinese Journal of Computers, 2003(5): 611-615. [14] YAO Jingtao, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1977-1989. [15] YAO Jingtao. Information granulation and granular relationships[C] //IEEE International Conference on Granular Computing. Beijing: IEEE, 2005. [16] 李丹. 多粒度粗糙集模型下的矩阵属性约简算法[J]. 计算机工程与应用, 2017, 53(19):168-172. LI Dan. Matrix-based attribute reduction approach under multigranulation rough set[J]. Computer Engineering and Applications, 2017, 53(19):168-172. [17] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55:225-237. [18] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M] //SLOWINSKI R. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic Publisher, 1991:331-362. [19] GE Meijun, FAN Nianbai, SUN Tao. Attribute reduction algorithm based on structure discernibility matrix in composite information systems[C] //International Conference on Information Science and Technology. Wuhan: ITM Web of Conferences, 2017, 11:01016. |
[1] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
[2] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
[3] | 张文娟,李进金,林艺东. 基于图的悲观多粒度粗糙集粒度约简[J]. 《山东大学学报(理学版)》, 2021, 56(1): 60-67. |
[4] | 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61. |
[5] | 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104. |
|