您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 1-14.doi: 10.6040/j.issn.1671-9352.5.2025.067

• •    

基于多尺度特征融合与改进注意力的锈蚀螺栓螺帽检测

孙迪1,2,郭义童2*,任超1,范海峰1,2,张传雷2   

  1. 1.天津大学电气自动化与信息工程学院, 天津 300072;2.天津科技大学人工智能学院, 天津 300222
  • 发布日期:2026-01-15
  • 通讯作者: 郭义童(2000— ),男,硕士研究生,研究方向为计算机视觉. E-mail:gyt23836967@mail.tust.edu.cn
  • 作者简介:孙迪(1986— ),女,副教授,硕士研究生导师,博士,研究方向为计算机视觉、深度学习等. E-mail:dsun@tust.edu.cn*通信作者:郭义童(2000— ),男,硕士研究生,研究方向为计算机视觉. E-mail:gyt23836967@mail.tust.edu.cn

Based on multi-scale feature fusion and improved attention for rusty bolt and nut detection

  1. 1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
    2. College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin 300222, China
  • Published:2026-01-15

摘要: 针对输电线路巡检中螺栓螺帽目标尺寸小、数量多、且存在复杂背景遮挡的检测问题,提出具有多尺度特征融合机制和改进注意力机制的螺栓-螺母检测Transformer(bolt-nut detection Transformer, BN-DETR)算法。构建跨阶段部分连接网络(cross stage partial darknet, CSPDarknet)为主干网络的特征提取模块,通过集成局部感知、全局注意力机制和多层感知机实现多尺度特征的高效聚合,设计基于改进注意力的尺度内特征交互模块,通过动态选择关键点降低计算复杂度,同时保持全局信息交互能力,提出多层次注意力融合机制(全局、局部、像素级)提升特征表达能力。实验结果表明, BN-DETR算法的平均精度均值@50较基线算法提高3%,为电力设施微小缺陷检测提供有效的技术参考。

关键词: 螺栓螺帽, 小目标检测, 锈蚀, Transformer

Abstract: To address the detection challenges associated with bolts and nuts in transmission line inspections—such as small object sizes, large quantities, and complex background occlusions,the method of bolt-nut detection Transformer(BN-DETR)incorporating a multi-scale feature fusion mechanism and enhanced attention mechanisms is proposed. A feature extraction module is constructed utilizing the cross-stage partial darknet(CSPDarknet)as the backbone, which efficiently aggregates multi-scale features through the integration of local perception, global attention mechanisms, and multi-layer perceptron. Scale-wise feature interaction module based on improved attention is designed to dynamically select key sampling points, thereby reducing computational complexity while preserving global information exchange. A multi-level attention fusion mechanism encompassing global, local, and pixel-level attention are introduced to augment feature representation. Experimental results demonstrate that, on a self-constructed dataset of corroded bolts in transmission lines, BN-DETR achieves 3% improvement in the @50 metric relative to the baseline algorithm. The proposed method offers an effective technical reference for the detection of small defects in power infrastructure.

Key words: bolt-nut, small object detection, rust, Transformer

中图分类号: 

  • TP391
[1] ALHASSAN A B, ZHANG X D, SHEN H M, et al. Power transmission line inspection robots: a review, trends and challenges for future research[J]. International Journal of Electrical Power & Energy Systems, 2020, 118:105862.
[2] EISENBEISS H. A mini unmanned aerial vehicle(UAV): system overview and image acquisition[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 36(5/W1):1-7.
[3] 周庆泽,郭擎,王海荣,等. 双判别器深度残差GAN高光谱图像融合[J]. 中国图象图形学报,2024,29(7):2046-2062. ZHOU Qingze, GUO Qing, WANG Hairong, et al. Dual-discriminator deep residual GAN hyperspectral image fusion[J]. Journal of Image and Graphics, 2024, 29(7):2046-2062.
[4] 孙彬,高云翔,诸葛吴为,等. 可见光与红外图像融合质量评价指标分析[J]. 中国图象图形学报,2023,28(1):144-155. SUNBin, GAO Yunxiang, ZHUGE Wuwei, et al. Analysis of quality evaluation metrics for visible and infrared image fusion[J]. Journal of Image and Graphics, 2023, 28(1):144-155.
[5] 韩鲁光,陈纯毅,申忠业,等. 视觉显著性驱动的全景渲染图非局部降噪[J]. 中国图象图形学报,2024,29(4):939-0952. HAN Luguang, CHEN Chunyi, SHEN Zhongye, et al. Panoramic rendering non-local denoising driven by visual saliency[J]. Journal of Image and Graphics, 2024, 29(4):939-952.
[6] 张珂,周睿恒,石超君,等. 自监督E-Swin的输电线路金具检测[J]. 中国图象图形学报,2023,28(10):3064-3076. ZHANG Ke, ZHOU Ruiheng, SHI Chaojun, et al. Self-supervised E-Swin transmission line hardware detection[J]. Journal of Image and Graphics, 2023, 28(10):3064-3076.
[7] 赵振兵,蒋志钢,李延旭,等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报,2021,26(11):2545-2560. ZHAO Zhenbing, JIANG Zhigang, LI Yanxu, et al. A review of visual defect detection in transmission line components[J]. Journal of Image and Graphics, 2021, 26(11):2545-2560.
[8] AKBARI Y, ALMAADEED N, AL-MAADEED S, et al. Applications, databases and open computer vision research from drone videos and images: a survey[J]. Artificial Intelligence Review, 2021, 54:3887-3938.
[9] DILSHAD N, HWANG J Y, SONG J S, et al. Applications and challenges in video surveillance via drone: a brief survey[C] //2020 International Conference on Information and Communication Technology Convergence(ICTC). Jeju: IEEE, 2020:728-732.
[10] SAMPEDRO C, MARTINEZ C, CHAUHAN A, et al. A supervised approach to electric tower detection and classification for power line inspection[C] //2014 International Joint Conference on Neural Networks(IJCNN). Beijing: IEEE, 2014:1970-1977.
[11] MENG Xiaobo, CHEN Wencan, MEI Hongwei, et al. Corrosion mechanism of UHV transmission line tower foot in southern china[J]. IEEE Transactions on Power Delivery, 2023, 39(1):210-219.
[12] ZHANG Heng, YANG Wen, YU Huai, et al. Detecting power lines in UAV images with convolutional features and structured constraints[J]. Remote Sensing, 2019, 11(11):1342.
[13] ZHENG Jianfeng, WU Hang, ZHANG Han. Insulator-defect detection algorithm based on improved YOLOv7[J]. Sensors, 2022, 22(22):8801.
[14] ZHAO Zhenbing, WU Xueliang, QI Yincheng, et al. A knowledge-guided model of fitting detection in aerial transmission line images[J]. Energy Reports, 2020, 6:1071-1078.
[15] LUO Peng, WANG Bo, WANG Hongxia, et al. An ultrasmall bolt defect detection method for transmission line inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:1-12.
[16] GIRSHICK R. Fast R-CNN[C] //2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: IEEE, 2015:1440-1448.
[17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016:779-788.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //In Proceedings of the 31st International Conference on Neural Information Processing Systems. California: Curran Associates Incorporation, 2017:6000-6010.
[19] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C] //Computer Vision -ECCV 2020. Glasgow: Springer, 2020:213-229.
[20] WANG Yingming, ZHANG Xiangyu, YANG Tong, et al. Anchor DETR: query design for transformer-based object detection[C] //Proceedings of the AAAI Conference on Artificial Intelligence.Vancouver: AAAI, 2022:2567-2575.
[21] MENG Depu, CHEN Xiaokang, FAN Zejia, et al. Conditional DETR for fast training convergence[C] // 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021:3631-3640.
[22] ZHUXizhou, SU Weijie, LU Lewei, et al. Deformable DETR: deformable transformers for end-to-end object detection[J/OL]. arXiv preprint.(2020-10-15)[2025-10-08]. https://arxiv.org/abs/2010.04159.
[23] LIUShilong, LI Feng, ZHANG Hao, et al. DAB-DETR: dynamic anchor boxes are better queries for detr[J/OL]. arXiv preprint.(2022-03-07)[2025-10-08]. https://arxiv.org/abs/2203.03605.
[24] ZHAOYian, LÜ Wenyu, XU Shangliang, et al. Detrs beat YOLOS on real-time object detection[J/OL]. arXiv preprint.(2023-04-17)[2025-10-08]. https://arxiv.org/abs/2304.08069.
[25] XIA Zhuofan, PAN Xuren, SONG Shiji, et al. Vision transformer with deformable attention[C] //2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans: IEEE, 2022:4784-4793.
[26] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus: IEEE, 2014:580-587.
[27] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2014, 37(9):1904-1916.
[28] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(6):1137-1149.
[29] KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach:IEEE, 2019:6399-6408.
[30] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 99:2999-3007.
[31] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. Centernet++ for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5):3509-3521.
[32] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition atscale[J/OL]. arXiv preprint.(2020-10-22)[2025-10-08]. https://arxiv.org/abs/2010.11929.
[33] WANG Tao, YUAN Li, CHEN Yunpeng, et al. PNP-DETR: towards efficient visual analysis with transformers[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal:IEEE, 2021:4641-4650.
[34] ROH B, SHIN J W, SHIN W, et al. Sparse DETR: efficient end-to-end object detection with learnable sparsity[J/OL]. arXiv preprint.(2021-11-29)[2025-10-08]. https://arxiv.org/abs/2111.14330.
[35] DAI Xiyang, CHEN Yinpeng, YANG Jianwei, et al. Dynamic DETR: end-to-end object detection with dynamic attention[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021:462-471.
[36] LUO Peng, WANG Bo, WANG Hongxia, et al. An ultrasmall bolt defect detection method for transmission line inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:5006512.
[37] SONG Zhiwei, HUANG Xinbo, JI Chao, et al. Deformable YOLOS: detection and rust warning method of transmission line connection fittings based on image processing technology[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:2504321.
[38] HUA Guoxiang, ZHANG Huai, HUANG Chen, et al. An enhanced YOLOv8-based bolt detection algorithm for transmission line[J]. IET Generation, Transmission & Distribution, 2024, 18(24):4065-4077.
[39] QI Yincheng, HUO Yalin, LIU Shaohang, et al. Optimized YOLOS based transmission line bolt cascade detection[C] //2022 IEEE International Conference on Systems, Man, and Cybernetics(SMC). Prague: IEEE, 2022:2099-2102.
[40] ZHANG Ke, LOU Wenshuo, WANG Jiacun, et al. PA-DETR: end-to-end visually indistinguishable bolt defects detection method based on transmission line knowledge reasoning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:1-14.
[41] ZHU Pengfei, WEN Longyin, DU Dawei, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11):7380-7399.
[42] SUO Jiashun, WANG Tianyi, ZHANG Xingzhou, et al. HIT-UAV: a high-altitude infrared thermal dataset for unmanned aerial vehicle-based object detection[J]. Scientific Data, 2023, 10:227.
[1] 闫本聪,王迎美. 基于引导滤波和Transformer的双分支视网膜血管分割网络[J]. 《山东大学学报(理学版)》, 2025, 60(7): 22-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!