您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

分数阶非线性对流-扩散方程及其解

刘艳芹1,2,徐明瑜2,蒋晓芸2   

  1. 1.德州学院数学系, 山东德州253023; 2.山东大学数学与系统科学学院, 山东济南250100
  • 收稿日期:2006-04-25 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 刘艳芹1,2

The fractional nonlinear convection-diffusion equation and its solution

LIU Yan-qin1,2,XU Ming-yu2 and JIANG Xiao-yun2   

  1. 1. Department of Mathematics, Dezhou Univ., Dezhou 253023, Shandong, China; 2. School of Math. and System Sci., Shandong Univ., Jinan 250100, Shandong, China
  • Received:2006-04-25 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: LIU Yan-qin1,2

摘要: 建立了含有外力的分数阶非线性对流-扩散方程.讨论了具有扩散系数D(x)∝x-θ的整数阶方程,利用q-指数函数和q-对数函数的特性,求得了解析解.考虑吸附效应的分数阶方程,在非线性参量满足某种关系的情况下,求得了精确特解,并研究了解的渐近行为.

关键词: 非线性方程, 分数阶微积分, Tsallis 熵 , q-对数函数, q-指数函数

Abstract: Fractional nonlinear convectiondiffusion equation with external forces is given. First, the integer equation is studied by considering the diffusion coefficient D(x)∝xθ. By using the q-exponential function and q-logarithm function, the analytical solution of the equation is derived. Second, a fractional equation with absorption is analyzed. On condition that the nonlinear parameters satisfy certain relationships, a special solution can be obtained. In addition, the asymptotic behaviors for the solution are also discussed.

Key words: Tsallis entropy , q-logarithm function, q-exponential function, fractional calculus, nonlinear equation

中图分类号: 

  • O175.29
[1] 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111.
[2] 成军祥,尚海锋. 具时间依赖源的双非线性抛物方程的Cauchy问题[J]. J4, 2013, 48(8): 50-55.
[3] 翟汝坤,蒋晓芸. 复杂人体组织传热的时间分数阶模型及其解[J]. J4, 2012, 47(6): 1-4.
[4] 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102.
[5] 林爱华, 蒋晓芸. 有限分形介质中带有分数阶振子的分数阶反应扩散方程及其解析解[J]. J4, 2009, 44(2): 24-27.
[6] 刘艳芹1, 2,马军海1,蒋晓芸3. 一类径向对称的多分数阶非线性扩散方程及其解[J]. J4, 2009, 44(12): 64-66.
[7] 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 .
[8] 刘甲国 . 高阶的分数阶的粘弹性材料本构模型的复模量与复柔量[J]. J4, 2008, 43(4): 85-88 .
[9] 张新东,王秋华 . 避免二阶导数计算的Newton迭代法的一个改进[J]. J4, 2007, 42(7): 72-76 .
[10] 齐海涛,金辉 . 广义二阶流体平板不定常流动的解析解[J]. J4, 2006, 41(4): 61-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!