您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (10): 116-121.

• 论文 • 上一篇    下一篇

五阶色散KdV方程的交替分段显-隐差分格式

左进明1,张天德2   

  1. 1. 山东理工大学理学院, 山东 淄博 255049;
    2. 山东大学数学学院, 山东 济南 250100
  • 收稿日期:2009-04-01 出版日期:2010-10-16 发布日期:2010-10-19
  • 作者简介:左进明(1975-),男,硕士,主要从事偏微分方程数值解的研究. Email:zuojinming@sdut.edu.cn
  • 基金资助:

    山东省自然科学基金资助项目(Y2006A07)

Alternating segment explicit-implicit scheme for  the  fifth-order  dispersive  KdV equation

ZUO Jin-ming1, ZHANG Tian-de2   

  1. 1. School of Science, Shandong University of Technology, Zibo 255049, Shandong, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2009-04-01 Online:2010-10-16 Published:2010-10-19

摘要:

对五阶色散KdV方程给出了一组非对称的差分格式,用这些差分格式与显、隐差分格式组合,构造了一类具有本性并行的交替分段显-隐格式,证明了格式的线性绝对稳定性。数值试验表明,这种方法有很好的精度。

关键词: 五阶色散KdV方程; 并行计算; 交替分段显-隐差分格式; 线性绝对稳定

Abstract:

 A group of asymmetric difference schemes to approach the fifth-order dispersive KdV equation are given. Using the schemes and the full explicit difference scheme and the full implicit difference scheme, the alternating difference scheme for solving the fifthorder dispersive KdV equation is constructed. The scheme is linear unconditionally stable by analysis of linearization procedure, and is used directly on the parallel computer. Numerical experiments show that the method has high accuracy.
 

Key words: the fifth-order dispersive KdV equation; parallel computation; alternating segment explicitimplicit scheme; linear unconditionally stable

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!