您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (11): 27-31.

• 电子技术与信息 • 上一篇    下一篇

一种考虑可能区域和智能搜索相结合的定位算法

周书旺1,2,3,王英龙1,3,郭强1,2,魏诺1,2,郭文娟1,3   

  1. 1.山东省计算中心, 山东 济南 250014; 2.山东省计算机网络重点实验室, 山东 济南 250014;
    3.山东师范大学信息科学与工程学院, 山东 济南 250014
  • 收稿日期:2010-06-30 出版日期:2010-11-16 发布日期:2010-11-24
  • 作者简介:周书旺(1985-),男,硕士研究生,主要研究领域为无线传感器网络.Email:ftdy123@163.com
  • 基金资助:

    国家自然科学基金资助项目(60802030);山东省中青年科学家科研奖励基金资助项目(2007BSC01002);山东省科技攻关计划项目(2007GG2QT01007)

A new method for localization based on network  coverage and intelligent search

ZHOU Shu-wang1,2,3, WANG Ying-long1,3, GUO Qiang1,2, WEI Nuo1,2,  GUO Wen-juan1,3   

  1. 1. Shandong Computer Science Center, Jinan 250014, Shandong, China;
    2. Shandong Provincial Key Laboratory of Computer Network, Jinan 250014, Shandong, China;
    3. School of Information Science &  Engineering, Shandong Normal University, Jinan 250014, Shandong, China
  • Received:2010-06-30 Online:2010-11-16 Published:2010-11-24

摘要:

提出了一种考虑可能区域和智能搜索相结合的无线传感器网络节点定位算法。该算法首先利用各个锚节点到未知节点的距离确定未知节点的可能区域,然后利用微粒群算法(particle swarm optimization, PSO)搜索出落在可能区域内的符合条件的结果,最后取符合条件的结果的均值作为未知节点的估计位置。实验结果表明,该算法定位精度较高,并且具有很强的鲁棒性,相比于一般的定位算法(如最小二乘法),在测距误差为35%的情况下,其定位精度可以提高49%左右。

关键词: 无线传感器网络;节点定位;微粒群算法;可能区域

Abstract:

A new method for localization based on network coverage and intelligent search (CIL) was presented. First, the distance from each anchor nodes to the unknown node was used to determine the possible region. Second,  the positions which meet specific criteria were searched out by a particle swarm optimization algorithm, and the searching results within the possible region were recorded. Finally, the unknown node′s localization could be obtained by calculating the average recording results. Experimental results showed that CIL has high positioning accuracy and strong robustness. Compared with normal schemes such as the least square method (LS), the CIL′s positioning accuracy could improve 49% when the ranging error was 35%.

Key words: wireless sensor networks(WSNs); node localization; particle swarm optimization(PSO);  possible region

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!