您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (6): 46-49.

• 论文 • 上一篇    下一篇

五阶色散方程的交替分组方法

付吉美1,左进明2*,张天德1   

  1. 1. 山东大学数学学院, 山东 济南 250100; 2. 山东理工大学理学院, 山东 淄博 255049
  • 收稿日期:2009-03-09 出版日期:2010-06-16 发布日期:2010-06-17
  • 通讯作者: 左进明(1975-),男,硕士,主要从事偏微分方程数值解的研究. E-mail:Email:zuojinming@sdut.edu.cn
  • 作者简介:付吉美(1982-),女,硕士研究生,主要从事偏微分方程数值解的研究.Email:meimeihappyeveryday@126.com
  • 基金资助:

    山东省自然科学基金资助项目(Y2006A07)

The alternating group method for fifth-order dispersive equation

FU Ji-mei1, ZUO Jin-ming2*, ZHANG Tian-de1   

  1. 1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China;
    2. School of Science, Shandong University of Technology, Zibo 255049, Shandong, China
  • Received:2009-03-09 Online:2010-06-16 Published:2010-06-17

摘要:

对五阶色散方程给出了一组非对称的差分公式,用这些差分公式构造了一种适合于并行计算的交替分组方法,证明了格式的稳定性。数值试验表明, 这种方法在空间方向具有接近二阶的精度。

关键词: 五阶色散方程;并行计算;交替分组方法;绝对稳定

Abstract:

A group of asymmetric difference schemes to approximate the fifth-order dispersive equation are given. Using the schemes, the alternating group method for solving the fifth-order dispersive equation is constructed. The scheme is unconditionally stable, and is directly used on the parallel computer. The numerical experiments show the method has near the second order ratio of convergence in space.
 

Key words: fifth-order dispersive equation; parallel computation; alternating group method; unconditionally stable

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!