您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (11): 81-88.

• 数学 • 上一篇    下一篇

非游荡算子的拓扑稳定性

王明刚,许华   

  1. 南京师范大学泰州学院, 江苏 泰州 225300
  • 收稿日期:2010-12-01 出版日期:2011-11-20 发布日期:2011-11-30
  • 作者简介:王明刚(1982- ),男,硕士,讲师,研究方向为无穷维动力系统. Email:magic821204@sina.com
  • 基金资助:

    泰州市科技发展计划项目(2011045)

The topologically stability of a non-wandering operator

WANG Ming-gang, XU Hua   

  1. College of Taizhou, Nanjing Normal University, Taizhou 225300, Jiangsu, China
  • Received:2010-12-01 Online:2011-11-20 Published:2011-11-30

摘要:

在无穷维可分Banach空间中引进了无环条件和滤子的概念,给出了非游荡算子的滤子的例子,说明了基本集满足无环条件的非游荡算子是存在的,在此基础上给出了非游荡算子的拓扑稳定性定理。

关键词: 非游荡算子;超循环算子;滤子;无环条件;拓扑稳定性

Abstract:

The stability of a non-wandering operator is studied by introducing filtration and nocycle condition in infinite dimensional separable Banach space. Some examples of filtration and no-cycle condition in infinite dimensional separable Banach space are shown. Then a sufficient condition for a non-wandering vector manifold to be stable is given.
 

Key words: non-wandering operator; hyper-cyclic operator; filtration; no-cycle condition; topologically stability

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!