您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (3): 102-108.

• 数学 • 上一篇    下一篇

次分数布朗运动的几点注记

申广君1,2, 何坤3,闫理坦3*   

  1. 1.华东理工大学数学系, 上海 200237; 2.安徽师范大学数学系, 安徽 芜湖 241000;
    3.东华大学数学系, 上海  201620
  • 收稿日期:2010-05-06 发布日期:2011-04-21
  • 通讯作者: 闫理坦(1961- ), 男,教授,博士生导师,研究方向为随机分析及其应用. Email:litanyan@dhu.edu.cn
  • 作者简介:申广君(1976- ), 男,副教授,博士研究生,研究方向为随机分析及其应用. Email:guangjunshen@yahoo.com.cn
  • 基金资助:

    国家自然科学基金资助项目(10871041); 安徽省高等学校省级自然科学研究重点项目(KJ2011A139)

Remarks on sub-fractional Brownian motion

SHEN Guang-jun 1,2, HE Kun 3, YAN Li-tan 3*   

  1. 1. Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China;
    2. Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui, China;
    3. Department of Mathematics, Donghua University, Shanghai 201620, China
  • Received:2010-05-06 Published:2011-04-21

摘要:

假设 SH={SHt,t≥0}是指标为H∈(0,1) 的次分数Brown运动,证明了当h→+∞时,增量过程 (SHh+t-SHh,t≥0)依分布收敛于指数H的分数Brown运动,同时讨论了与次分数Brown噪声相关联的极限定理。

关键词: Brown运动; 分数Brown运动; 次分数Brown运动; 拟Dirichlet 过程

Abstract:

Let SH={SHt,t≥0} be a sub-fractional Brownian motion with index H∈(0,1). It is shown that the increment process generated by the sub-fractional Brownian motion (SHh+t-SHh,t≥0) converges to a fractional Brownian motion with Hurst index H in the sense of finite dimensional distributions, as h tends to infinity. Also,  the limit theorems associated with the subfractional Brownian noise are also studied.

Key words: Brownian motion; fractional Brownian motion; sub-fractional Brownian motion; quasi-Dirichlet process

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!