您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (4): 98-102.

• 论文 • 上一篇    下一篇

Banach空间中的Xd Bessel列

王亚丽,曹怀信,张巧卫   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安710062
  • 收稿日期:2010-01-23 发布日期:2011-04-21
  • 作者简介:王亚丽(1983- ), 女,硕士研究生,主要从事算子理论与小波分析研究. Email:wangyali831220@163.com
  • 基金资助:

    国家自然科学基金资助项目(10571113; 10871224); 陕西省自然科学研究计划(2009JM1011)

Sequences of Xd Bessel for a Banach space

WANG Ya-li, CAO Huai-xin, ZHANG Qiao-wei   

  1. College of Mathematics and Information Sciences, Shaanxi Normal University, Xi′an 710062, Shaanxi, China
  • Received:2010-01-23 Published:2011-04-21

摘要:

研究了Banach空间X中的Xd Bessel列、Xd框架、Xd独立框架、Xd紧框架与Xd Riesz基。 证明了当Xd为BK-空间时, (BXdX,‖·‖)是数域F上的Banach空间;当Xd是BK-空间且X自反时, 通过定义算子Tf, 建立了空间BXdX 与算子空间B(X*,Xd)之间的等距同构, 为利用算子论的方法研究Xd Bessel列提供了必要的理论依据。 最后, 给出了Banach空间X中Xd Bessel列的等价刻画并证明了独立的Xd 框架与Xd Riesz基是一致的。

关键词: Xd Bessel列; Xd框架; Xd Riesz基

Abstract:

Xd Bessel sequences, Xd frames, Xd independent frames, Xd tight frames and Xd Riesz basis for a Banach space X are introduced and discussed. It is proved that (BXdX,‖·‖) is a Banach space when Xd is a BK-space. By defining an operator Tf, an isometric isomorphism from BXdX to B(X*,Xd) is established when Xd is a BK-space and X is reflexive, which provides a necessary theoretical basis for studying Xd Bessel sequences by the operator theory. Finally, the equivalent characterizations of  Xd Bessel sequences for a Banach space X are given. Also, it is proved that independent Xd frames and Xd Riesz bases for a Banach space X are the same.

Key words:  Xd Bessel sequence; Xd frame; Xd Riesz basis

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!