山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 118-124.doi: 10.6040/j.issn.1671-9352.7.2014.002
• 论文 • 上一篇
曲滨鹏1, 王智昊2
QU Bin-peng1, WANG Zhi-hao2
摘要: 通过对已提出的适应Memetic算法的研究与分析,采用改进粒子群优化作为Memetic算法的全局优化策略按照不同类型的适应Memetic算法构成六类基于粒子群优化的适应Memetic算法,并用于求解典型的测试函数。根据对实验结果分析这几类算法的优缺点。实验结果表明适应PMemetic算法提高了全局搜索能力、收敛速度和解的精度。
中图分类号:
[1] KRASNOGOR N, SMITH J E. A tutorial for competent memetic algorithms: model, taxonomy and design issues[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(5):474-488. [2] MCKAY M, BECKMAN R, CONOVER W. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2):239-245. [3] CRAWFORD B, CASTRO C, MONFROY E. A hyperheuristic approach for guiding enumeration in constraint solving[J]. Advances in Intelligent Systems and Computing, 2013, 175:171-188. [4] MAASHI M, ZCAN E, KENDALL G. A multi-objective hyper-heuristic based on choice function[J]. Expert Systems with Applications, 2014, 41(9):4475-4493. [5] KOULINAS G, ANAGNOSTOPOULOS K. A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities[J]. Automation in Construction, 2013, 31:169-175. [6] DETTERER D, KWAN P. A co-evolving memetic wrapper for Herb-Herb interaction analysis in TCM informatics[J]. Lecture Notes in Computer Science, 2012, 7104:361-371. [7] HUANG Wei-Hsiu, CHANG Pei-Chann, LIMB Meng-Hiot. Memes co-evolution strategies for fast convergence in solving single machine scheduling problems[J]. 2012, 50(24):7357-7377. [8] NERI F, WEBER M, CARAFFINI F, et al. Meta-Lamarckian learning in three stage optimal memetic exploration[EB/OL]. Computational Intelligence (UKCI), 2012. http://www.researchgate.net/researcher/2004327828_M_Weber [9] KANG S, YANG H, SCHOR L, et al. Multi-objective mapping optimization via problem decomposition for many-core systems[EB/OL]. 2012 IEEE 10th Symposium onEmbedded Systems for Real-time Multimedia (ESTIMedia), 2012. http://www.computer.org/csdl/proceedings/estimedia/2012/4968/00/06507026.pdf [10] LIU Bo, WANG Ling, JIN Yi-Hui. An effective PSO-based memetic algorithm for flow shop scheduling[C]//IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37(1): 18-27. DOI: 10.1109/TSMCB.2006.883272 |
[1] | 马兰,李伟岸,尹天懿. 基于变邻域搜索改进的冲突解脱粒子群算法[J]. 山东大学学报(理学版), 2017, 52(1): 23-28. |
[2] | 万智萍1,吕志民1,2*. 一种自适应物种寻优的无线Mesh网络QoS路由算法[J]. J4, 2013, 48(09): 10-16. |
[3] | 丁卫平1,2,3,王建东2,段卫华2,施佺1. 一种求解属性约简优化的协同粒子群算法[J]. J4, 2011, 46(5): 97-102. |
[4] | 裴胜玉,周永权*. 一种基于混沌变异的多目标粒子群优化算法[J]. J4, 2010, 45(7): 18-23. |
[5] | 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48-51. |
[6] | . 微生物批式流加发酵的建模及基于HPSO算法的参数辨识[J]. J4, 2009, 44(7): 71-78. |
[7] | 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78. |
[8] | 张国英,沙 芸,江慧娜 . 基于粒子群优化的快速KNN分类算法[J]. J4, 2006, 41(3): 34-36 . |
|