山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (09): 90-96.doi: 10.6040/j.issn.1671-9352.2.2014.337
王伟平, 张兵
WANG Wei-ping, ZHANG Bing
摘要: 钓鱼网站是指伪装成合法网站,窃取用户提交的账号、密码等私密信息的网站。基于页面特征识别的钓鱼网站检测方法具有较好的识别准确性,但现有方法对页面特征伪造的情况识别较弱,容易漏判。首先分析了大量钓鱼网站的页面代码,总结了常见的9种页面特征伪造方式,并针对性地提出了支持页面特征伪造识别的钓鱼网站检测方法。该方法对页面渲染后再做特征提取识别,在页面渲染过程中检查URL地址跳转的伪装,通过直接操纵DOM提取iframe内嵌页面的内容,去除页面所有隐藏元素以防止钓鱼攻击者伪造页面关键词。测试结果表明该方法能够去除多种伪装,完成页面特征的准确提取,提高检测的准确率。
中图分类号:
[1] 金山网络.2012年度计算机病毒及钓鱼网站统计报告[EB/OL].[2014-04-15].http://www.ijinshan.com/news/safety-data-2.shtml. Jinshan Network.2012 annual computer virus and fishing website statistics report[EB/OL].[2014-04-15].http://www.ijinshan.com/news/safety-data-2.shtml. [2] Google. Google safe browsing API[EB/OL].[2014-04-15].http://code.google.com/apis/safebrowsing/. [3] PRAKASH P, KUMAR M, KOMPELLA R R, et al. PhishNet: predictive blacklisting to detect phishing attacks[C]//Proceedings of the IEEE INFOCOM. New York: IEEE, 2010:1-5. [4] SHENG S, WARDMAN B, WARNER G, et al. An empirical analysis of phishing blacklists[C]//Proceedings of the 6th Conference on Email and Anti-Spam. CA, USA: CEAS, 2009. [5] GARERA S, PROVOS N, CHEW M, et al. A framework for detection and measurement of phishing attacks[C]//Proceedings of the 2007 ACM Workshop on Recurring Malcode(WORM'07).New York: ACM Press, 2007: 1-8. [6] BASNET R B, SUNG A H. Mining web to detect phishing URLs[C]//Proceedings of the 11th International Conference on Machine Learning and Applications (ICMLA 2012).Los Alamitos: IEEE Computer Society, 2012: 568-573. [7] ZHANG Jianyi, WANG Yonghao. A real-time automatic detection of phishing URLs[C]//Proceedings of the 2nd International Conference on Computer Science and Network Technology (ICCSNT2012). Piscatawaty: IEEE, 2012: 1212-1216. [8] CHEN Kuanta, JAU-YUAN C, HUANG Chunrong, et al. Fighting phishing with discriminative keypoint features[J]. Proceedings of IEEE Internet Computing, 2009, 13(3): 56-63. [9] HARA M, YAMADA A, MIYAKE Y. Visual similarity-based phishing detection without victim site information[C]//IEEE Symposium on Computational Intelligence in Cyber Security (CICS'09). Piscataway: IEEE, 2009: 30-36. [10] 张卫丰,周毓明,许蕾,等.基于匈牙利匹配算法的钓鱼网页检测方法[J].计算机学报,2010, 33(10):1963-1975. ZHANG Weifeng, ZHOU Yuming, XU Lei, et al. A method of detecting phishing web pages based on hungarian matching algorithm[J]. Chinese Journal of Computers, 2010, 33(10): 1963-1975. [11] CHEN T C, DICK S, MILLER J. Detecting visually similar web pages: application to phishing detection[J]. ACM Transactions on Internet Technology, 2010, 10(2): 5.1-5.38. [12] CHOU N, LEDESMA R, TERAGUCHI Y, et al. Client-side defense against web-based identity theft[C]//Proceedings of the 11th Annual Network and Distributed System Security Symposium(NDSS 2004).[S.l.]:[s.n.],2014. [13] JOSHI Y, SAKLIKAR S, DAS D, et al. PhishGuard: a browser plug-in for protection from phishing[C]//Proceedings of 2nd International Conference on Internet Multimedia Services Architecture and Applications (IMSAA 2008). New York: IEEE, 2008: 1-6. [14] LIU Gang, QIU Bite, LIU Wenyin. Automatic detection of phishing target from phishing webpage[C]//Proceedings of 20th International Conference on Pattern Recognition (ICPR 2010). Los Alamitos: IEEE Computer Society, 2010: 4153-4156. [15] ZHANG Yue, HONG Jason, CRANOR Lorrie. Cantina:a content-based approach to detecting phishing web sites[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007: 639-648. [16] XIANG Guang, HONG Jason, ROSE Carolyn, et al. CANTINA+: a feature-rich machine learning framework for detecting phishing web sites[J]. ACM Transactions on Information and System Security, 2011, 14(2): 21.1-21.28. [17] PhishTank.基于社区的反钓鱼攻击服务[EB/OL].[2014-04-15].http://www.phishtank.com/phish-search.php? valid=y&active=y. PhishTank.Community service based on the anti phishing attacks[EB/OL].[2014-04-15].http://www.phishtank.com/phish-search.php? Valid=y&active=y. [18] 丁南燕.世界各国网址大全[EB/OL].[2014-04-15].http://www.world68.com/. DING Nanyan. The world web site[EB/OL].[2014-04-15].http://www.world68.com/. |
[1] | 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1-11. |
[2] | 原伟,唐亮,易绵竹. 基于本体的俄文新闻话题检测设计与实现[J]. 山东大学学报(理学版), 2018, 53(9): 49-54. |
[3] | 王凯,洪宇,邱盈盈,王剑,姚建民,周国栋. 一种查询意图边界检测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 13-18. |
[4] | 随云仙,刘勇. 基于二步邻居拓扑的E-Burt结构洞检测算法[J]. 山东大学学报(理学版), 2017, 52(9): 59-68. |
[5] | 梁小林,郭敏,李静. 更新几何过程的参数估计[J]. 山东大学学报(理学版), 2017, 52(8): 53-57. |
[6] | 庄政茂,陈兴蜀,邵国林,叶晓鸣. 一种时间相关性的异常流量检测模型[J]. 山东大学学报(理学版), 2017, 52(3): 68-73. |
[7] | 王彤,马延周,易绵竹. 基于DTW的俄语短指令语音识别[J]. 山东大学学报(理学版), 2017, 52(11): 29-36. |
[8] | 岳猛,吴志军,姜军. 云计算中基于可用带宽欧氏距离的LDoS攻击检测方法[J]. 山东大学学报(理学版), 2016, 51(9): 92-100. |
[9] | 高元照,李炳龙,吴熙曦. 基于物理内存的注册表逆向重建取证分析算法[J]. 山东大学学报(理学版), 2016, 51(9): 127-136. |
[10] | 杜红乐,张燕,张林. 不均衡数据集下的入侵检测[J]. 山东大学学报(理学版), 2016, 51(11): 50-57. |
[11] | 周先存, 黎明曦, 李瑞霞, 徐明鹃, 凌海波. 多点协作复制攻击检测研究[J]. 山东大学学报(理学版), 2015, 50(07): 54-65. |
[12] | 王磊, 何辰, 谢江宁. 基于加权PCA分析的三维点云模型对称性检测算法[J]. 山东大学学报(理学版), 2014, 49(09): 166-170. |
[13] | 范铭, 刘均, 郑庆华, 田振洲, 庄尔悦, 刘烃. 基于栈行为动态胎记的软件抄袭检测方法[J]. 山东大学学报(理学版), 2014, 49(09): 9-16. |
[14] | 刘烃, 赵宇辰, 刘杨, 孙亚楠. 基于报警数据融合的智能电网攻击检测方法[J]. 山东大学学报(理学版), 2014, 49(09): 35-40. |
[15] | 刘纪芹,张彤. P-集合的粒度与P-知识辨识发现[J]. 山东大学学报(理学版), 2014, 49(06): 6-10. |
|