您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (01): 81-84.doi: 10.6040/j.issn.1671-9352.0.2014.198

• 论文 • 上一篇    下一篇

滚压载荷下关节软骨的溶质传递

王龙韬1,2, 杨秀萍1,2, 刘清2, 杨文静3, 范振敏2, 张春秋2   

  1. 1. 天津理工大学天津市先进机电系统设计与智能控制重点实验室, 天津 300384;
    2. 天津理工大学机械工程学院, 天津 300384;
    3. 天津市职工医院药剂科, 天津 300005
  • 收稿日期:2014-05-04 修回日期:2014-10-22 出版日期:2015-01-20 发布日期:2015-01-24
  • 通讯作者: 张春秋(1968-),男,博士后,教授,研究方向为生物力学.E-mail:zhang_chunqiu@126.com E-mail:zhang_chunqiu@126.com
  • 作者简介:王龙韬(1989-),男,硕士研究生,研究方向为关节软骨.E-mail:hugedragon828@sina.com
  • 基金资助:
    国家自然科学基金资助项目(11172208);国家自然科学重点基金资助项目(11432016);国家自然科学基金青年基金资助项目(11402172)

Solute transport in articular cartilage under rolling-compressing load

WANG Long-tao1,2, YANG Xiu-ping1,2, LIU Qing2, YANG Wen-jing3, FAN Zhen-min2, ZHANG Chun-qiu2   

  1. 1. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin 300384, China;
    2. School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China;
    3. Pharmacy Department, Tianjin Worker's Hospital, Tianjin 300005, China
  • Received:2014-05-04 Revised:2014-10-22 Online:2015-01-20 Published:2015-01-24

摘要: 为研究关节软骨在滚压载荷下溶质的扩散行为,取成年猪关节软骨,用异硫氰酸荧光素-右旋糖酐标记,分别观察在滚压载荷和静置状态下,软骨中溶质荧光强度随时间和软骨层位置的变化,得到相对浓度和扩散系数的变化规律。结果表明,滚压载荷样本B的溶质相对浓度始终大于静置状态样本A,平均值最大相差62.4%,随时间增加,B组软骨中层和深层相对浓度比A组增加明显;B组扩散系数高于A组,平均值最大相差93%,随时间增加,B组软骨中间层扩散系数比A组显著增加。因此,滚压载荷可以促进关节软骨的溶质传递,提高溶质的扩散系数,特别是对中层和深层影响显著。

关键词: 滚压载荷, 关节软骨, 溶质, 浓度, 扩散系数

Abstract: In order to study solute transport behavior of articular cartilage under rolling-compressing load, mature pig articular cartilages were marked by Fluorescein isothiocyanate-Dextran, their solute fluorescence intensity change with time and cartilage depth was observed under rolling-compressing load and static state respectively. The changing laws of relative concentration and diffusivity were obtained. The results show that solute relative concentration under rolling-compressing load (sample B) is larger than that under static state (sample A), and average maximum is 62.4% difference. Relative concentration in transitional and deep layers of sample B increases more significantly than that of sample A with time increasing. Diffusivity of sample B is larger than that of sample A, and average maximum is 93% difference. Diffusivity in transitional and deep layer of sample B increases more conspicuously than that of sample A with time increasing. So rolling-compressing load can promote solute transport, and improve solute diffusivity in articular cartilage, especially in transitional and deep layers.

Key words: diffusivity, rolling-compressing load, solute, articular cartilage, concentration

中图分类号: 

  • R318.01
[1] VAN C Mow, MARK H Holmes, LAI W Michael. Fluid transport and mechanical properties of articular cartilage: A review[J]. Journal of Biomechanics, 1984, 17(5):377-394.
[2] QUINN T M, MOREL V, MEISTER J J. Static compression of articular cartilage can reduce solute diffusivity and partitioning: Implications for the chondrocyte biological response[J]. Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, 2001, 34(11):1463-1469.
[3] PALMOSKI M, PERRICONE E, BRANDT K D. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization[J]. Arthritis Rheum, 1979, 22:508-517.
[4] TAMMI M, SAAMANEN A M, JAUHIAINEN A, et al. Proteoglycan alterations in rabbit knee articular cartilage following physical exercise and immobilization[J]. Connective Tissue Res, 1983, 11:45-55.
[5] KIVIRANTA I, JURVELIN J, TAMMI M, et al. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs[J]. Arthritis & Rheumatism, 1987, 30:801-809.
[6] SAH R L Y, KIM Y J, DOONG J Y H, et al. Biosynthetic response of cartilage explants to dynamic compression[J]. J Orthop Res, 1989, 7:619-636.
[7] KIM Y J, SAH R L Y, GRODZINSKY A J, et al. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli [J]. Arch Biochem Biophys, 1994, 311:1-12.
[8] BONASSAR L J, GRODZINSKY A J, FRANK E H, et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I [J]. J Orthop Res, 2001, 19:11-17.
[9] QUINN T M, GRODZINSKY A J, BUSCHMANN M D, et al. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants[J]. J Cell Sci, 1998, 111:573-583.
[10] KIM Y J, BONASSAR L J, GRODZINSKY A J. The role of cartilage streaming potential, fluid flow, and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression[J]. Journal of Biomechanics,1995, 28:1055-1066.
[11] EVANS ROBIN C, QUINN T M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage [J]. Biophysical Journal, 2006, 91(4): 1541-1547.
[12] LI Yang, FRANK E H, WANG Yang, et al. Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-alpha and interleukin-6, but accentuates degradation above a strain threshold [J]. Osteoarthritis and Cartilage, 2013, 21(12):1933-1941.
[13] EVANS ROBIN C, QUINN T M. Solute convection in dynamically compressed cartilage[J]. Journal of Biomechanics, 2006, 39:1048-1055.
[14] 张春秋,樊瑜波,孙明林,等. 构建关节软骨的滚压加载装置[J]. 中国组织工程研究与临床康复,2010, 14(15):2688-2691. ZHANG Chunqiu, FAN Yubo, SUN Minglin, et al. A rolling depression loading device for articular cartilage construction[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(15):2688-2691.
[15] ARKILL K P, WINLOVE C P. Solute transport in the deep and calcified zones of articular cartilage[J]. Osteoarthritis and Cartilage, 2008, 16(6):708-714.
[16] ARKILL K P, WINLOVE C P. Fatty acid transport in articular cartilage [J]. Arch Biochem Biophys, 2006, 456(1):71-78.
[17] CRANK J. The Mathematics of Diffusion [M]. 2nd. Oxford: Clarendon Press, 1975.
[1] 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40.
[2] 秦晓怡,高丽兰,张慧,张春秋,葛洪玉,刘志动. 不同压缩速率下关节软骨力学性能的有限元模拟[J]. 山东大学学报(理学版), 2016, 51(3): 34-39.
[3] 姜俊, 杨秀萍, 刘清, 张春秋. 压缩载荷下关节软骨溶质扩散的模拟[J]. 山东大学学报(理学版), 2015, 50(01): 85-89.
[4] 张健青1,2,谢伟伟3,邹婉平3,温永艳3. 溶质传输问题的一个经济差分格式[J]. J4, 2013, 48(6): 75-79.
[5] 曾云辉. 具非线性扩散系数的二阶中立型阻尼偏微分方程解的振动性[J]. J4, 2010, 45(2): 66-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!