您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (01): 85-89.doi: 10.6040/j.issn.1671-9352.0.2014.295

• 论文 • 上一篇    下一篇

压缩载荷下关节软骨溶质扩散的模拟

姜俊1,2, 杨秀萍1,2, 刘清2, 张春秋2   

  1. 1. 天津理工大学天津市先进机电系统设计与智能控制重点实验室, 天津 300384;
    2. 天津理工大学机械工程学院, 天津 300384
  • 收稿日期:2014-06-26 修回日期:2014-11-13 出版日期:2015-01-20 发布日期:2015-01-24
  • 通讯作者: 张春秋(1968-),男,博士后,教授,硕士生导师,研究方向为生物力学.E-mail:zhang_chunqiu@126.com E-mail:zhang_chunqiu@126.com
  • 作者简介:姜俊(1989-),男,硕士研究生,研究方向为关节软骨.E-mail:jiangjun891230@126.com
  • 基金资助:
    国家自然科学基金资助项目(11172208);国家自然科学重点基金资助项目(11432016);国家自然科学基金青年基金资助项目(11402172)

Simulating the solute diffusion in articular cartilage under compression loading

JIANG Jun1,2, YANG Xiu-ping1,2, LIU Qing2, ZHANG Chun-qiu2   

  1. 1. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical Systems, Tianjin 300384, China;
    2. School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2014-06-26 Revised:2014-11-13 Online:2015-01-20 Published:2015-01-24

摘要: 为研究压缩载荷下关节软骨溶质的扩散过程及其规律,采用有限元方法,将三相本构方程转化为两相方程,利用传热学模型对压缩载荷作用下的溶质扩散进行计算,分析了动态压缩幅值及频率对溶质扩散的影响,得到了软骨内溶质浓度的分布图及随时间、位置变化的曲线。结果表明:压缩幅值相同时,静态压缩比动态压缩时软骨内部溶质更容易扩散;动态压缩幅值增加时,对溶质扩散有抑制作用;频率增加,有利于软骨各层溶质扩散。

关键词: 溶质, 关节软骨, 扩散, 压缩载荷, 有限元

Abstract: In order to study the process and law of solute diffusion in articular cartilage under compression loading, triphasic constitutive relation was converted into a biphasic equation and the finite element method of heat transfer was applied to simulate the solute diffusion under compression loading. The effects of dynamic compression amplitude and frequency on solute diffusion were analyzed. Solute concentration distribution and curves with time and locations in cartilage were obtained. The results show that solute diffusion is easier under static compression than that of dynamic compression with the same compression amplitude. Dynamic compression amplitude increase restrains solute diffusion; frequency increase is good for solute diffusion at the different layers inside the cartilage.

Key words: diffusion, compression loading, articular cartilage, solute, finite element method

中图分类号: 

  • R318.01
[1] 邱郡,张文光,吴刚.关节软骨的仿生设计[J].生物医学工程学,2008,25(1):181-185. QIU Jun, ZHANG Wenguang, WU Gang. Bionic design of articular cartilage[J].Biomedical Engineering, 2008, 25(1):181-185.
[2] YOUSEF Shafieyan, NILOUFAR Khosravi, MOHAMMAD Moeini, et al.Diffusion of MRI and CT contrast agents in articular cartilage under static compression[J].Biophysical Journal, 2014, 107(2):485-492.
[3] 董江峰,于杰,陈维毅.力学刺激对关节软骨基质代谢的影响[J].国际骨科学杂志,2006,27(6):328-331. DONG Jiangfeng, YU Jie, CHEN Weiyi. The effect of metabolism in articular cartilage under mechanical loading[J].International Journal of Orthopedics, 2006, 27(6):328-331.
[4] GU W Y, LAI W M, MOW V C. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes:passive transport and swelling behaviours[J]. Journal of Biomechanics Engineering, 1998, 120(2):169-180.
[5] LAI W M, HOU J S, MOW V C. A triphasic theory for the swelling and deformation behaviours of articular cartilage[J]. Journal of Biomechanics Engineering, 1991, 113(3):245-258.
[6] HAI Yao, WEI Yong Gu.Physical signals and solute transport in cartilage under dynamic unconfined compression:finite element analysis[J].Annals of Biomedical Engineering, 2004, 32(3):380-390.
[7] ROBIN C Evans,THOMAS M Quinn.Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage[J].Biophysical Journal, 2006, 91(4):1541-1547.
[8] 邓元望,袁茂强,刘长青.传热学[M].北京:水利水电出版社,2010.
[9] SIMON B R, LIABLE J P, PFLASTER D, et al.A poroelastic finite element formulation including transport and swelling in soft tissue structures[J].Journal of Biomechanics Engineering, 1996, 118(1):1-9.
[10] YUAN Chen, XIAN Chen, TOSHIAKI Hisada.Triphasic finite element simulation of articular cartilage swelling and curling behaviors[J].Computational Mechanics Wccm Vi In Conjunction With Apcom, 2004, 9:5-10.
[11] MOW V C, KUEI S C, LAI W M, et al. Biphasic creep and stress relaxation of articular cartilage in compression:theory and experiments[J].Journal of Biomechanics Engineering, 1980, 102(1):73-84.
[12] CHRISTOPHEr Lovell Smith.Some aspects of the biomechanics of articular cartilage repair[D].Cleveland:Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2001:107-110.
[1] 栾义超,杨秀萍,张静静,刘清,张春秋. 压缩条件下腰椎间盘松弛特性的有限元仿真[J]. 山东大学学报(理学版), 2018, 53(3): 77-81.
[2] 章广志,蔡绍斌,马春华,张东秋. 最大距离可分码在网络编码纠错中的应用[J]. 山东大学学报(理学版), 2018, 53(1): 75-82.
[3] 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57.
[4] 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40.
[5] 邓小方,钟元生,吕琳媛,王明文,熊乃学. 融合社交网络的物质扩散推荐算法[J]. 山东大学学报(理学版), 2017, 52(3): 51-59.
[6] 张道祥, 赵李鲜, 胡伟. 一类三种群食物链模型中交错扩散引起的Turing不稳定[J]. 山东大学学报(理学版), 2017, 52(1): 88-97.
[7] 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77.
[8] 陈玲,门玉涛,王加江. 种植术与分根术联合治疗术后牙体可靠性分析[J]. 山东大学学报(理学版), 2016, 51(5): 6-10.
[9] 刘江璧,雒志学. 具有年龄结构非线性扩散系统的最优控制[J]. 山东大学学报(理学版), 2016, 51(5): 136-142.
[10] 刁群,石东洋. 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析[J]. 山东大学学报(理学版), 2016, 51(4): 90-98.
[11] 秦晓怡,高丽兰,张慧,张春秋,葛洪玉,刘志动. 不同压缩速率下关节软骨力学性能的有限元模拟[J]. 山东大学学报(理学版), 2016, 51(3): 34-39.
[12] 张静静,杨秀萍,刘清,张春秋. 基于Biot理论的腰椎间盘力学响应分析[J]. 山东大学学报(理学版), 2016, 51(11): 93-98.
[13] 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122.
[14] 王学彬. 二维、三维的多项时间、空间Caputo-Riesz分数阶扩散方程的解析解[J]. 山东大学学报(理学版), 2015, 50(10): 89-94.
[15] 刘春梅, 钟柳强, 舒适, 肖映雄. 平面弹性问题的高次有限元离散系统的局部多重网格法[J]. 山东大学学报(理学版), 2015, 50(08): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!