您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 32-37.doi: 10.6040/j.issn.1671-9352.0.2014.267

• 论文 • 上一篇    下一篇

两类特殊三圈图的正负惯性指数和零度

杨陈, 马海成   

  1. 青海民族大学数学系, 青海 西宁 810007
  • 收稿日期:2014-06-11 修回日期:2014-10-14 出版日期:2015-02-20 发布日期:2015-01-27
  • 作者简介:杨陈(1989-),女,硕士,研究方向为组合数学. E-mail:yangchenmylv@163.com;马海成(1965-),男,教授,研究方向为代数图论. E-mail:qhmymhc@163.com
  • 基金资助:
    青海省自然科学基金资助项目(2011-Z-911)

Positive and negative inertia indexes and nullity of two special kinds of tricyclic graphs

YANG Chen, MA Hai-cheng   

  1. Department of Mathematics, Qinghai University for Nationalities, Xining 810007, Qinghai, China
  • Received:2014-06-11 Revised:2014-10-14 Online:2015-02-20 Published:2015-01-27

摘要: 讨论了Ⅰ-型三圈图和Ⅱ-型三圈图的正负惯性指数和零度问题. 主要通过删除悬挂的树和压缩内部路等方法,给出了两类特殊三圈图的正负惯性指数和零度的计算方法: Ⅰ-型三圈图的正负惯性指数(零度)等于一些树和一些双圈图(或单圈图或树)的正负惯性指数(零度)之和; Ⅱ-型三圈图的正负惯性指数(零度)等于一些树和一些简单三圈图的正负惯性指数(零度)之和, 对于点数较少的三圈图的正负惯性指数和零度利用软件Matlab计算得到.

关键词: 正惯性指数, 三圈图, 负惯性指数, 零度

Abstract: The problem how to calculate the positive and negative inertia indexes and nullity of Ⅰ-type and Ⅱ-type tricyclic graphs are discussed. By deleting pendant trees and compressing internal paths, a method of calculating the positive and negative inertia indexes and nullity of the two kinds of tricyclic graphs is given. It is proved that the positive and negative inertia indexes and nullity of Ⅰ-type tricyclic graphs equal to the sum of some trees and bicyclic graphs(or unicyclic graphs or trees), respectively; the positive and negative inertia indexes and nullity of Ⅱ-type tricyclic graphs equal to the sum of some trees and simple tricyclic graphs, and the positive and negative inertia indexes and nullity of simple tricyclic graphs can be calculated by Matlab.

Key words: negative inertia index, tricyclic graph, positive inertia index, nullity

中图分类号: 

  • O157.5
[1] Longuet-Higgins H C. Resonance structures and molecular orbitals in unsaturated hydrocarbons[J]. Journal of Chemical Physics, 1950,18(3):265-274.
[2] CHENG Bo, LIU Bolian. On the nullity of tricyclic graphs[J]. Linear Algebra and its Applications, 2011, 434(8):1799-1810.
[3] CHENG Bo, LIU Bolian. On the nullity of graphs[J]. Linear Algebra and its Applications, 2007, 16:60-67.
[4] CVETKOVI ? D, DOOB M, SACHS H. Spectra of graphs-theory and its application[M]. New York: Academic Press, 1980.
[5] FAN YIzheng, QIAN Keshi. On the nullity of bipartite graphs[J]. Linear Algebra and its Applications, 2009, 430:2943-2949.
[6] GUO J M, YAN W, YEH Y N. On the nullity and matching number of unicyclic graphs[J]. Linear Algebra and its Applications, 2009, 431:1293-1301.
[7] SCIRIHA I, GUTMAN I. On the nullity of line graphs of trees[J]. Discrete Mathematics, 2001, 232(1/3):35-45.
[8] 谭学忠. 图的谱性质的研究[D]. 广州:华南师范大学, 2006. TAN Xuezhong. The study of spectral properties of graph[D]. Guangzhou: South China Normal University, 2006.
[9] 吴廷增, 扈生彪. 几类图的零度[J]. 西南大学学报:自然科学版, 2010, 32(4):97-100. WU Tingzeng, HU Shengbiao. On the nullity of some classes of graphs[J]. Journal of Southwest University: Natural Science Edition, 2010, 32(4):97-100.
[10] QIAN Keshi. Unicyclic graphs with nullity one[J]. Journal of Mathematical Research and Exposition, 2010, 30(5):825-832.
[11] TAN Xuezhong, LIU Bolian. On the nullity of unicyclic graphs[J]. Linear Algebra and its Applications, 2005, 408:212-220.
[12] 李薇, 常安. 非奇异单圈图的刻划[J]. 数学研究, 2007, 40(4):442-445. LI Wei, CHANG An. Describing the nonsingular unicyclic graph[J]. Journal of Mathematical Study, 2007, 40(4):442-445.
[13] FAN Yizheng, WANG Yue, WANG Yi. A note on the nullity of unicyclic signed graphs[J]. Linear Algebra and its Applications, 2013, 438(3):1193-1200.
[14] SCIRIHA I. On the construction of graphs of nullity one[J]. Discrete Mathematics, 1998, 181(1/3):193-211.
[15] HU Shengbiao, TAN Xuezhong, LIU Bolian. On the nullity of bicyclic graphs[J]. Linear Algebra and its Applications, 2008, 429(7):1387-1391.
[16] 朱东旭. 零度为1的无交双圈图刻划[J]. 漳州师范学院学报:自然科学版, 2012, 2:18-24. ZHU Dongxu. The characterization of non-interactive bicycle graph with nullity one[J]. Journal of Zhangzhou Normal University: Nat Sci, 2012, 2:18-24.
[17] YU Guihai, FENG Lihua, WANG Qingwen. Bicyclic graphs with small positive index of inertia[J]. Linear Algebra and its Applications, 2013, 438(5):2036-2045.
[18] MA Haicheng, YANG Wenhua, LI Shenggang. Positive and negative inertia index of a graph[J]. Linear Algebra and its Applications, 2013, 438(1):331-341.
[19] 孟霞飞, 马海成, 李生刚. 两类三圈图的正负惯性指数和零度[J]. 陕西师范大学学报:自然科学版, 2013, 4:16-19. MENG Xiafei, MA Haicheng, LI Shenggang. Positive and negative inertia indexes and nullity of two kinds of tricyclic graphs[J]. Journal of Shanxi Normal University: Natural Science Edition, 2013, 4:16-19.
[20] LI Shuchao, YANG Huangxu. On tricyclic graphs whose second largest eigenvalue dose not exceed 1[J]. Linear Algebra and its Applications, 2011, 434:2211-2221.
[21] BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: American Elsevier, 1976.
[1] 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27-34.
[2] 寇艳芳,陈祥恩,王治文. K1,3,p K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60.
[3] 刘小花,马海成. Q形图的匹配能序及Hosoya指标排序[J]. 山东大学学报(理学版), 2018, 53(8): 61-65.
[4] 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41.
[5] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[6] 李亭亭,劳会学. 一类混合型数论函数的均值估计[J]. 山东大学学报(理学版), 2017, 52(8): 70-74.
[7] 王晓丽,王慧娟,刘彬. 最大度为7的平面图全染色[J]. 山东大学学报(理学版), 2017, 52(8): 100-106.
[8] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33.
[9] 王晔,孙磊. 不含3圈和4圈的1-平面图是5-可染的[J]. 山东大学学报(理学版), 2017, 52(4): 34-39.
[10] 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104.
[11] 朱晓颖,逄世友. 控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2): 30-36.
[12] 杨春花,蔡建生. 限定条件下图的f-染色的分类[J]. 山东大学学报(理学版), 2017, 52(2): 37-38.
[13] 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71.
[14] 朱海洋,顾 毓,吕新忠. 平面图的平方染色数的一个新上界[J]. 山东大学学报(理学版), 2016, 51(2): 94-101.
[15] 关爱霞, 李芳, 李国全. 关于诱导度偏差的指数型上尾估计[J]. 山东大学学报(理学版), 2015, 50(12): 73-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!