您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 47-54.doi: 10.6040/j.issn.1671-9352.0.2014.207

• 论文 • 上一篇    下一篇

模糊Quantale范畴中的投射对象

鲁静, 赵彬   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2014-05-08 修回日期:2014-11-03 出版日期:2015-02-20 发布日期:2015-01-27
  • 通讯作者: 赵彬(1965-), 男, 教授, 博士生导师, 研究方向为格上拓扑与模糊推理. E-mail:zhaobin@snnu.edu.cn E-mail:zhaobin@snnu.edu.cn
  • 作者简介:鲁静(1989-), 女, 硕士研究生, 研究方向为格上拓扑与模糊推理. E-mail:lujing@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11171196,11301316); 中央高校基本科研业务费专项资金项目(GK201302003)

The projective objects in the category of fuzzy quantales

LU Jing, ZHAO Bin   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
  • Received:2014-05-08 Revised:2014-11-03 Online:2015-02-20 Published:2015-01-27

摘要: 引入了模糊弱⊗-稳定完全分配格的概念, 证明了模糊序半群的下集格带有合适的 ⊗ 运算是模糊弱⊗-稳定完全分配格, 给出了模糊Quantale是模糊弱⊗-稳定完全分配格的充要条件; 讨论了模糊Quantale中的投射对象, 证明了模糊Quantale中的E-投射对象恰是模糊弱⊗-稳定完全分配格.

关键词: -稳定完全分配格, 模糊完全分配格, 模糊弱&otimes, 投射对象

Abstract: The concept of fuzzy weakly ⊗-stable completely distributive lattices is introduced. It is proved that the family of all down sets of a fuzzy ordered semigroup with a appropriate operation ⊗ is a fuzzy weakly ⊗-stable completely distributive lattice. A necessary and sufficient condition for a fuzzy completely distributive lattice to be a fuzzy weakly ⊗-stable completely distributive lattice is given. Finally, projective objects in the category of fuzzy quantales are studied. It is also proved that the E-projective objects in the category of fuzzy quantales are exactly the fuzzy weakly ⊗-stable completely distributive lattices.

Key words: -stable completely distributive lattice, fuzzy completely distributive lattice, projective object, fuzzy weakly ⊗

中图分类号: 

  • O153.1
[1] MULVEY C J. &[J]. Rendiconti del Circolo Matematico diPalermo II, 1986, 12(2):99-104.
[2] MULVEY C J, PELLETIER J W. On the quantisation of points[J]. Journal of Pure and Applied Algebra, 2001, 159(2-3):231-295.
[3] ROSENTHAL K I. Quantale and their applications[M]. New York: Longman Scientific & Technical, 1990.
[4] ZADEH L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971, 3(2):177-200.
[5] BěLOHLÁVEK R. Fuzzy ralational systems: foundations and principles[M]. New York: Kluwer Academic Publishers, Plenum Publishers, 2002.
[6] BODENHOFER U. Similarity-based generalization of fuzzy orderings preserving the classical axioms[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2000, 8(5):593-610.
[7] BODENHOFERr U. Representations and constructions of similarity-based fuzzy orderings[J]. Fuzzy Sets and Systems, 2003, 137(1):113-136.
[8] FAN Lei. A new approach to quantitative domain theory[J]. Electronic Notes in Theoretical Computer Science, 2001, 45(1):77-87.
[9] ZHANG Qiye, FAN Lei. Continuity in quantitative domains[J]. Fuzzy Sets and Systems, 2005, 154(1):118-131.
[10] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathatical Logic Quarterly, 2009, 55(1):84-91.
[11] ADÁMEK J, HERRLICH H, STRECKER G E. Abstract and concrete catagories[M]. New York: Wiley Interscience, 1990.
[12] GRÄTER G. Universal Algebras[M]. 2nd. New York: Springer-Verlag, 1979.
[13] 汪开云. 模糊Domain与Quantale中若干问题的研究[D]. 西安: 陕西师范大学, 2012. WANG Kaiyun. Some researches on fuzzy domains and fuzzy quantales[D]. Xi'an: Shaanxi Normal University, 2012.
[14] 赖洪亮. Ω-范畴序结构性质的研究[D]. 成都: 四川大学, 2007. LAI Hongliang. On the order structure properties of Ω-categories[D]. Chengdu: Sichuan University, 2007.
[15] LI Yongming, ZHOU Meng, LI Zhihui. Projective and injective objects in the category of quantales[J]. Journal of Pure and Applied Algebra, 2002, 176(2-3):249-258.
[1] 王海伟,赵彬. Q-并代数范畴中的投射对象[J]. 山东大学学报(理学版), 2018, 53(2): 73-82.
[2] 任兰兰,杨晓燕. 三角范畴中的强 n-Gorenstein-投射对象[J]. 山东大学学报(理学版), 2014, 49(04): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!