您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 82-89.doi: 10.6040/j.issn.1671-9352.0.2014.196

• 论文 • 上一篇    下一篇

对称格路与恒等式

邓利华1, 邓玉平2, Louis W. Shapiro3   

  1. 1. 河南理工大学数学与信息科学学院, 河南 焦作 454000;
    2. 大连理工大学数学科学学院, 辽宁 大连 116024;
    3. 霍华德大学数学系, 美国 华盛顿哥伦比亚特区 20059
  • 收稿日期:2014-05-04 修回日期:2014-11-17 出版日期:2015-04-20 发布日期:2015-04-17
  • 作者简介:邓利华(1983-),女,硕士,讲师,研究方向为组合数学.E-mail:denglihua@hpu.edu.cn
  • 基金资助:
    河南理工大学青年基金(Q2013-02A);国家自然科学基金资助项目(11992132)

The Riordan group and symmetric lattice paths

DENG Li-hua1, DENG Yu-ping2, Louis W. Shapiro3   

  1. 1. School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China;
    2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China;
    3. Department of Mathematics, Howard University, Washington, DC 20059, USA
  • Received:2014-05-04 Revised:2014-11-17 Online:2015-04-20 Published:2015-04-17

摘要: 对一种简单而又重要的组合结构——对称格路进行了研究.记dn, mn, sn分别为长2n的对称Dyck格路, Motzkin格路, Schröder格路的个数.利用Riordan阵理论得到了他们之间所满足的六个组合恒等式并给予两个组合解释. 最后,得到了特殊 Riordan阵系数所满足的恒等式.根据某些恒等式估计长为2n的对称Dyck路平均中间高度和平均落在x轴上的点的个数.

关键词: 对称 Schröder格路, Riordan阵, 恒等式, 对称 Motzkin 格路, 对称 Dyck 格路

Abstract: The symmetric lattice paths are studied. Let dn, mn, and sn denote the number of symmetric Dyck paths, symmetric Motzkin paths, and symmetric Schröder paths of length 2n, respectively. By using Riordan group methods, six identities relating dn, mn, and sn are obtained and also two of them combinatorial proofs are given. Finally, some relations satisfied by the generic element of some special Riordan arrays are investigated and the average mid-height and the average number of points on the x-axis of symmetric Dyck paths of length 2n are obtained.

Key words: Riordan group, combinatorial identities, symmetric Motzkin paths, symmetric Dyck paths, symmetric Schröder paths

中图分类号: 

  • O157.1
[1] CHEN W Y C, DENG E Y P, YANG L L M. Motzkin paths and reduced decompositions for permutations with forbidden patterns[J]. Electron J Combin, 2003, 9(2):1-13.
[2] DEUTSCH E, SHAPIRO L W. A bijection between ordered trees and 2-Motzkin paths and its many consequences[J]. Discrete Math, 2002, 256:655-670.
[3] STANLEY R P. Enumerative combinatorics: Vol.2[M]. Cambridge: Cambridge University Press, 1999.
[4] SLOANE N J A. The on-line encyclopedia of integer sequences[EB/OL]. (2003-12-24). http//www.research.att.com/njas/sequences.
[5] ROGERS D G. Pascal triangles, catalan numbers and renewal arrays[J]. Discrete Math, 1978, 22(3):301-310.
[6] KETTLE S G. Families enumerated by the Schrder-Etherington sequence and a renewal array it generates[M]// Lecture Notes in Math: Vol 1036. Berlin: Springer, 1983:244-274.
[7] SHAPIRO L W, GETU S, WOAN W J, et al. The riordan group[J]. Discrete Appl Math, 1991, 34(1-3):229-239.
[8] SPRUGNOLI R. Riordan arrays and the Abel-Gould identity[J]. Discrete Math, 1995, 142(1-3):213-233.
[9] DENG Eva Y P, YAN Weijun. Some identities on the Catalan, Motzkin, and Schroder numbers[J]. Discrete Appl Math, 2008, 156:2781-2789.
[10] DERSHOWITZ N, ZAKS S. Enumerations of ordered trees[J]. Discrete Math, 1980, 31:9-28.
[1] 宋贤梅,熊蕾. Z2a+uZ2a 上线性码的MacWilliams恒等式及自对偶码[J]. 山东大学学报(理学版), 2016, 51(2): 72-78.
[2] 刘修生,刘花璐. 环Fp+vFp上线性码的MacWilliams恒等式[J]. J4, 2013, 48(12): 61-65.
[3] 吴校贵, 张建华. 全矩阵代数上保Jacobi恒等式的线性映射[J]. J4, 2009, 44(1): 49-52 .
[4] 李志荣,李映辉 . 一类新的包含Genocchi数与Riemann Zeta函数求和的计算公式[J]. J4, 2007, 42(4): 79-83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!