山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 82-89.doi: 10.6040/j.issn.1671-9352.0.2014.196
邓利华1, 邓玉平2, Louis W. Shapiro3
DENG Li-hua1, DENG Yu-ping2, Louis W. Shapiro3
摘要: 对一种简单而又重要的组合结构——对称格路进行了研究.记dn, mn, sn分别为长2n的对称Dyck格路, Motzkin格路, Schröder格路的个数.利用Riordan阵理论得到了他们之间所满足的六个组合恒等式并给予两个组合解释. 最后,得到了特殊 Riordan阵系数所满足的恒等式.根据某些恒等式估计长为2n的对称Dyck路平均中间高度和平均落在x轴上的点的个数.
中图分类号:
[1] CHEN W Y C, DENG E Y P, YANG L L M. Motzkin paths and reduced decompositions for permutations with forbidden patterns[J]. Electron J Combin, 2003, 9(2):1-13. [2] DEUTSCH E, SHAPIRO L W. A bijection between ordered trees and 2-Motzkin paths and its many consequences[J]. Discrete Math, 2002, 256:655-670. [3] STANLEY R P. Enumerative combinatorics: Vol.2[M]. Cambridge: Cambridge University Press, 1999. [4] SLOANE N J A. The on-line encyclopedia of integer sequences[EB/OL]. (2003-12-24). http//www.research.att.com/njas/sequences. [5] ROGERS D G. Pascal triangles, catalan numbers and renewal arrays[J]. Discrete Math, 1978, 22(3):301-310. [6] KETTLE S G. Families enumerated by the Schrder-Etherington sequence and a renewal array it generates[M]// Lecture Notes in Math: Vol 1036. Berlin: Springer, 1983:244-274. [7] SHAPIRO L W, GETU S, WOAN W J, et al. The riordan group[J]. Discrete Appl Math, 1991, 34(1-3):229-239. [8] SPRUGNOLI R. Riordan arrays and the Abel-Gould identity[J]. Discrete Math, 1995, 142(1-3):213-233. [9] DENG Eva Y P, YAN Weijun. Some identities on the Catalan, Motzkin, and Schroder numbers[J]. Discrete Appl Math, 2008, 156:2781-2789. [10] DERSHOWITZ N, ZAKS S. Enumerations of ordered trees[J]. Discrete Math, 1980, 31:9-28. |
[1] | 宋贤梅,熊蕾. Z2a+uZ2a 上线性码的MacWilliams恒等式及自对偶码[J]. 山东大学学报(理学版), 2016, 51(2): 72-78. |
[2] | 刘修生,刘花璐. 环Fp+vFp上线性码的MacWilliams恒等式[J]. J4, 2013, 48(12): 61-65. |
[3] | 吴校贵, 张建华. 全矩阵代数上保Jacobi恒等式的线性映射[J]. J4, 2009, 44(1): 49-52 . |
[4] | 李志荣,李映辉 . 一类新的包含Genocchi数与Riemann Zeta函数求和的计算公式[J]. J4, 2007, 42(4): 79-83 . |
|