您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (06): 1-6.doi: 10.6040/j.issn.1671-9352.0.2014.328

• 论文 •    下一篇

一个不同到达率及负顾客的离散工作休假排队

刘再明, 于森林   

  1. 中南大学数学与统计学院, 湖南 长沙 410083
  • 收稿日期:2014-07-10 修回日期:2015-01-06 出版日期:2015-06-20 发布日期:2015-07-31
  • 作者简介:刘再明(1961-),男,博士,教授,研究方向为马氏过程、排队论研究.E-mail:math_lzm@csu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11271373)

A discrete time working vacations queuing system with different arrival rates and negative customers

LIU Zai-ming, YU Sen-lin   

  1. School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, China
  • Received:2014-07-10 Revised:2015-01-06 Online:2015-06-20 Published:2015-07-31

摘要: 提出并研究了带负顾客的Geo/Geo/1多重工作休假排队模型,其中正顾客在工作休假期和正常忙期的到达率不同。通过拟生灭链矩阵分析的的方法,求出了这个排队系统的转移概率矩阵、队长平稳分布、队长均值、随机分解、忙期分析。最后建立了费用函数,为系统的优化设计提供参考,并给出两个数值实例分析了参数对队长的影响。

关键词: 负顾客, 矩阵几何解, 不同到达率, 工作休假

Abstract: A multiple working vacations Geo/Geo/1 queuing system with negative customers was proposed and studied in this paper. For this model, the positive customers have different arrival rates in the normal busy period and working vacation period. The quantities including the transition probability matrix of the queuing system, the equilibrium distribution of the queue length, the mean number of customers, the stochastic decomposition and the busy period analysis were obtained by using the matrix-analytical method of quasi birth-death chains. The cost function and two numerical examples were given to provide a basis for optimal design and illustrate the impact of parameters on the queue length.

Key words: matrix-geometric solution, different arrival rates, working vacations, negative customers

中图分类号: 

  • O226
[1] SERVI L, FINN S. M/M/1 queue with working vacations(M/M/1/WV)[J]. Perfor Eval, 2003, 50(1):41-52.
[2] BABA Y. Analysis of a GI/M/1 queue with multiple vacations[J]. Operation Research Letter, 2005, 33(2):201-209.
[3] WU De'an,TAKAGI H. M/G/1 queue with multiple working vacations[J]. Perfor Eval, 2006, 63(7):654-681.
[4] 田乃硕,徐秀丽,马占友.离散时间排队论[M]. 北京:科学出版社,2008. TIAN Naishuo, XU Xiuli, MA Zhanyou. Queueing theory of discrete time[M]. Beijing: Science Press, 2008.
[5] 田乃硕,岳德权.拟生灭过程与矩阵几何解[M]. 北京:科学出版社,2002. TIAN Naishuo, YUE Dequan. The quasi birth and death process and matrix-geometric solution[M]. Beijing: Science Press, 2002.
[6] 高珊.若干离散时间排队系统的研究[D]. 长沙:中南大学,2011. GAO Shan. A study of some discrete-time queueing systems[D]. Changsha: Central South University, 2011.
[7] 张萍.带有工作休假的两类排队系统[D]. 长沙:中南大学,2012. ZHANG Ping. Two queueing systems with working vacations[D]. Changsha: Central South University, 2012.
[8] NEUTS M F. Matrix-geometric solution in stochastic models-an algorithmic approach[M]. Baltimore: Johns Hopkins Press, 1981.
[9] 洛川义,唐应辉.具有可变到达率的多重休假Geoλ12/G/1排队分析[J].数学学报,2010,53(4):805-816. LUO Chuanyi, TANG Yinghui. Analysis of a multi-vacation Geoλ12/G/1 queue with variable arrival rate[J]. Acta Mathematica Sinica, 2010, 53(4):805-816.
[10] 郭晓琼,马占友.带负顾客的GI/Geom/1工作休假排队[J].郑州大学学报:理学版,2011,43(4):28-32. GUO Xiaoqiong, MA Zhanyou. The GI/Geom/1 queue with negative customers and working vacations[J]. Journal of Zhengzhou University: Natural Science Edition, 2011, 43(4):28-32.
[1] 曹学云,徐秀丽,李沛. 带启动期的M[x]/M/1/SWV排队系统[J]. J4, 2011, 46(7): 116-123.
[2] 韦才敏,邹宗保. 带有广义随机工作休假的Geom/Geom/1排队系统[J]. J4, 2011, 46(6): 103-109.
[3] 张雷,王玉,吕胜利,马占友. 带有负顾客的M/M/m/k-m优先权排队系统分析[J]. J4, 2011, 46(11): 105-111.
[4] 孙贵勇 朱翼隽. N策略、负顾客、反馈Geo/Geo/1多重休假排队模型[J]. J4, 2010, 45(2): 37-43.
[5] 樊剑武 赵晓华 田乃硕 贠小青. 带有负顾客的M/M/1/N单重工作休假排队系统[J]. J4, 2009, 44(8): 68-73.
[6] 岳德权,马金旺,马明建,余 . 具有备用服务员的可修排队系统分析[J]. J4, 2009, 44(3): 39-44 .
[7] 赵晓华,樊剑武,田乃硕,田瑞玲 . 带有止步和中途退出的M/M/1/N多重工作休假排队系统[J]. J4, 2008, 43(10): 46-51 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!